PROBLEM OF THE WEEK

Solution of Problem No. 8 (Fall 2013 Series)

Problem:

Let \vec{v} and $\vec{v}_{1}, \vec{v}_{2}, \ldots$ be vectors in three space. Suppose $|\vec{v}|=1$ and $\left|\vec{v}_{n}\right| \geq 1$ for $n \geq 1$, where the absolute value signs represent the length of the vector involved. Prove

$$
\left|\vec{v}_{n}\right|+|\vec{v}|-\left|\vec{v}_{n}+\vec{v}\right| \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

if and only if there exists a sequence of positive scalars r_{n} such that

$$
\left|r_{n} \vec{v}_{n}-\vec{v}\right| \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Solution: (by David Stoner, Student, South Aiken High School, S. Carolina)

Let θ_{n} and d_{n} denote the angle between v and v_{n}, and the value $\left|v_{n}\right|$ respectively. Note that the second condition is true if and only if the sequence of scalars which minimize the given quantity work. Note that for the second condition to hold true, θ_{n} must clearly become eventually acute. After this point, the minimum value of the second quantity is $|v| \sin \theta_{n}$ for each n. Therefore, the second condition is true iff $\theta_{n} \rightarrow 0$. It remains to show that $|v|+\left|v_{n}\right|-\left|v+v_{n}\right| \rightarrow 0$ iff $\theta_{n} \rightarrow 0$. Note that by the law of cosines, $|v|+\left|v_{n}\right|-\left|v+v_{n}\right|=1+d_{n}-\sqrt{1+d_{n}^{2}+2 d_{n} \cos \theta_{n}}$. Now:

$$
1+d_{n}-\sqrt{1+d_{n}^{2}+2 d_{n} \cos \theta_{n}}=\frac{2 d_{n}\left(1-\cos \theta_{n}\right)}{1+d_{n}+\sqrt{1+d_{n}^{2}+2 d_{n} \cos \theta_{n}}}
$$

Let this quantity be A_{n}. Then, using $d_{n} \geq 1$:

$$
\begin{aligned}
& A_{n} \geq \frac{2 d_{n}\left(1-\cos \theta_{n}\right)}{d_{n}+1+d_{n}+1}=\left(\frac{d_{n}}{d_{n}+1}\right)\left(1-\cos \theta_{n}\right) \geq \frac{1-\cos \theta_{n}}{2} \\
& A_{n} \leq \frac{2 d_{n}\left(1-\cos \theta_{n}\right)}{d_{n}+d_{n}}=1-\cos \theta_{n}
\end{aligned}
$$

Hence $A_{n} \rightarrow 0$ iff $1-\cos \theta_{n} \rightarrow 0$ iff $\theta_{n} \rightarrow 0$ as desired.

The problem was also solved by:

Undergraduates: Bennett Marsh (Jr. Phys \& Math.)
Graduates: Tairan Yuwen (Chemistry)
Others: Hubert Desprez (Paris, France), Elie Ghosn (Montreal, Quebec), Wei-Xiang Lien (Miaoli, Taiwan), Vladimir B. Lukianov (Lecturer, Tel-Aviv), Jean Pierre Mutanguha (Student, Oklahoma Christian Univ), Paolo Perfetti (Roma, Italy), Sorin Rubinstein (TAU faculty,Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA)

