PROBLEM OF THE WEEK Solution of Problem No. 8 (Fall 2013 Series)

Problem:

Let \vec{v} and $\vec{v}_1, \vec{v}_2, \ldots$ be vectors in three space. Suppose $|\vec{v}| = 1$ and $|\vec{v}_n| \ge 1$ for $n \ge 1$, where the absolute value signs represent the length of the vector involved. Prove

$$|\vec{v}_n| + |\vec{v}| - |\vec{v}_n + \vec{v}| \longrightarrow 0$$
 as $n \to \infty$

if and only if there exists a sequence of positive scalars r_n such that

$$|r_n \vec{v}_n - \vec{v}| \longrightarrow 0$$
 as $n \to \infty$.

Solution: (by David Stoner, Student, South Aiken High School, S. Carolina)

Let θ_n and d_n denote the angle between v and v_n , and the value $|v_n|$ respectively. Note that the second condition is true if and only if the sequence of scalars which minimize the given quantity work. Note that for the second condition to hold true, θ_n must clearly become eventually acute. After this point, the minimum value of the second quantity is $|v| \sin \theta_n$ for each n. Therefore, the second condition is true iff $\theta_n \to 0$. It remains to show that $|v| + |v_n| - |v + v_n| \to 0$ iff $\theta_n \to 0$. Note that by the law of cosines, $|v| + |v_n| - |v + v_n| = 1 + d_n - \sqrt{1 + d_n^2 + 2d_n \cos \theta_n}$. Now:

$$1 + d_n - \sqrt{1 + d_n^2 + 2d_n \cos \theta_n} = \frac{2d_n(1 - \cos \theta_n)}{1 + d_n + \sqrt{1 + d_n^2 + 2d_n \cos \theta_n}}$$

Let this quantity be A_n . Then, using $d_n \ge 1$:

$$A_n \ge \frac{2d_n(1-\cos\theta_n)}{d_n+1+d_n+1} = \left(\frac{d_n}{d_n+1}\right)(1-\cos\theta_n) \ge \frac{1-\cos\theta_n}{2}$$
$$A_n \le \frac{2d_n(1-\cos\theta_n)}{d_n+d_n} = 1-\cos\theta_n.$$

Hence $A_n \to 0$ iff $1 - \cos \theta_n \to 0$ iff $\theta_n \to 0$ as desired.

The problem was also solved by:

<u>Undergraduates</u>: Bennett Marsh (Jr. Phys & Math.)

<u>Graduates</u>: Tairan Yuwen (Chemistry)

<u>Others</u>: Hubert Desprez (Paris, France), Elie Ghosn (Montreal, Quebec), Wei-Xiang Lien (Miaoli, Taiwan), Vladimir B. Lukianov (Lecturer, Tel-Aviv), Jean Pierre Mutanguha (Student, Oklahoma Christian Univ), Paolo Perfetti (Roma, Italy), Sorin Rubinstein (TAU faculty, Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA)