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C H A P T E R 1 3

Complex Numbers 
and Functions. Complex
Differentiation

The transition from “real calculus” to “complex calculus” starts with a discussion of
complex numbers and their geometric representation in the complex plane. We then
progress to analytic functions in Sec. 13.3. We desire functions to be analytic because
these are the “useful functions” in the sense that they are differentiable in some domain
and operations of complex analysis can be applied to them. The most important equations
are therefore the Cauchy–Riemann equations in Sec. 13.4 because they allow a test of
analyticity of such functions. Moreover, we show how the Cauchy–Riemann equations
are related to the important Laplace equation.

The remaining sections of the chapter are devoted to elementary complex functions
(exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the
familiar real functions of calculus. Detailed knowledge of them is an absolute necessity
in practical work, just as that of their real counterparts is in calculus.

Prerequisite: Elementary calculus.
References and Answers to Problems: App. 1 Part D, App. 2.

13.1 Complex Numbers and 
Their Geometric Representation

The material in this section will most likely be familiar to the student and serve as a
review.

Equations without real solutions, such as or were
observed early in history and led to the introduction of complex numbers.1 By definition,
a complex number z is an ordered pair (x, y) of real numbers x and y, written

z � (x, y).

x2 � 10x � 40 � 0,x2 � �1

1First to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO
(1501–1576), who found the formula for solving cubic equations. The term “complex number” was introduced
by CARL FRIEDRICH GAUSS (see the footnote in Sec. 5.4), who also paved the way for a general use of
complex numbers.



x is called the real part and y the imaginary part of z, written

By definition, two complex numbers are equal if and only if their real parts are equal
and their imaginary parts are equal.

(0, 1) is called the imaginary unit and is denoted by i,

(1)

Addition, Multiplication. Notation 
Addition of two complex numbers and is defined by

(2)

Multiplication is defined by

(3)

These two definitions imply that

and

as for real numbers Hence the complex numbers “extend” the real numbers. We
can thus write

because by (1), and the definition of multiplication, we have

Together we have, by addition, 
In practice, complex numbers are written

(4)

or e.g., (instead of i4).
Electrical engineers often write j instead of i because they need i for the current.
If then and is called pure imaginary. Also, (1) and (3) give

(5)

because, by the definition of multiplication, i2 � ii � (0, 1)(0, 1) � (�1, 0) � �1.

i2 � �1

z � iyx � 0,

17 � 4iz � x � yi,

z � x � iy

z � (x, y)
(x, y) � (x, 0) � (0, y) � x � iy.

iy � (0, 1)y � (0, 1)( y, 0) � (0 # y � 1 # 0, 0 # 0 � 1 # y) � (0, y).

(x, 0) � x.   Similarly,   (0, y) � iy

x1, x2.

(x1, 0)(x2, 0) � (x1x2, 0)

(x1, 0) � (x2, 0) � (x1 � x2, 0)

z1z2 � (x1, y1)(x2, y2) � (x1x2 � y1y2, x1y2 � x2y1).

z1 � z2 � (x1, y1) � (x2, y2) � (x1 � x2, y1 � y2).

z2 � (x2, y2)z1 � (x1, y1)

z � x � iy

i � (0, 1).

x � Re z,   y � Im z.
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For addition the standard notation (4) gives [see (2)]

For multiplication the standard notation gives the following very simple recipe. Multiply
each term by each other term and use when it occurs [see (3)]:

This agrees with (3). And it shows that is a more practical notation for complex
numbers than (x, y).

If you know vectors, you see that (2) is vector addition, whereas the multiplication (3)
has no counterpart in the usual vector algebra.

E X A M P L E  1 Real Part, Imaginary Part, Sum and Product of Complex Numbers

Let and . Then and

Subtraction, Division
Subtraction and division are defined as the inverse operations of addition and multipli-
cation, respectively. Thus the difference is the complex number z for which

Hence by (2),

(6)

The quotient is the complex number z for which If we
equate the real and the imaginary parts on both sides of this equation, setting 
we obtain The solution is

The practical rule used to get this is by multiplying numerator and denominator of 
by and simplifying:

(7)

E X A M P L E  2 Difference and Quotient of Complex Numbers

For and we get and

Check the division by multiplication to get �8 � 3i.

z1

z2
�

8 � 3i

9 � 2i
�

(8 � 3i)(9 � 2i)

(9 � 2i)(9 � 2i)
�

66 � 43i

81 � 4
�

66

85
�

43

85
 i.

z1 � z2 � (8 � 3i) � (9 � 2i) � �1 � 5iz2 � 9 � 2iz1 � 8 � 3i

z �
x1 � iy1

x2 � iy2
�

(x1 � iy1)(x2 � iy2)

(x2 � iy2)(x2 � iy2)
�

x1x2 � y1 y2

x2
2 � y2

2 � i 
x2 y1 � x1 y2

x2
2 � y2

2  .

x2 � iy2

z1>z2

z �
z1

z2
� x � iy,  x �

x1x2 � y1 y2

x2
2 � y2

2
 ,  y �

x2 y1 � x1 y2

x2
2 � y2

2
 .(7*)

x1 � x2x � y2y, y1 � y2x � x2y.
z � x � iy,

z1 � zz2.z � z1>z2 (z2 � 0)

z1 � z2 � (x1 � x2) � i ( y1 � y2).

z1 � z � z2.
z � z1 � z2

�z1z2 � (8 � 3i)(9 � 2i) � 72 � 6 � i (�16 � 27) � 78 � 11i.

z1 � z2 � (8 � 3i) � (9 � 2i) � 17 � i,

Re z1 � 8, Im z1 � 3, Re z2 � 9, Im z2 � �2z2 � 9 � 2iz1 � 8 � 3i

x � iy

 � (x1x2 � y1 y2) � i(x1 y2 � x2 y1).

 (x1 � iy1)(x2 � iy2) � x1x2 � ix1 y2 � iy1x2 � i2y1 y2

i2 � �1

(x1 � iy1) � (x2 � iy2) � (x1 � x2) � i( y1 � y2).
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Complex numbers satisfy the same commutative, associative, and distributive laws as real
numbers (see the problem set).

Complex Plane
So far we discussed the algebraic manipulation of complex numbers. Consider the
geometric representation of complex numbers, which is of great practical importance. We
choose two perpendicular coordinate axes, the horizontal x-axis, called the real axis, and
the vertical y-axis, called the imaginary axis. On both axes we choose the same unit of
length (Fig. 318). This is called a Cartesian coordinate system.
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Fig. 318. The complex plane Fig. 319. The number 4 � 3i in
the complex plane
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We now plot a given complex number as the point P with coordinates
x, y. The xy-plane in which the complex numbers are represented in this way is called the
complex plane.2 Figure 319 shows an example.

Instead of saying “the point represented by z in the complex plane” we say briefly and
simply “the point z in the complex plane.” This will cause no misunderstanding.

Addition and subtraction can now be visualized as illustrated in Figs. 320 and 321.

z � (x, y) � x � iy

y

x

z
2

z
1

z
1
 + z

2

y

x

z
1
– z

2

z
1

z
2

– z
2

Fig. 320. Addition of complex numbers Fig. 321. Subtraction of complex numbers

2Sometimes called the Argand diagram, after the French mathematician JEAN ROBERT ARGAND
(1768–1822), born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806,
nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745–1818), a surveyor
of the Danish Academy of Science. 



Fig. 322. Complex conjugate numbers

y

x5

2

–2

z = x + iy = 5 + 2i

z = x – iy = 5 – 2i

Complex Conjugate Numbers
The complex conjugate of a complex number is defined by

It is obtained geometrically by reflecting the point z in the real axis. Figure 322 shows
this for and its conjugate z � 5 � 2i.z � 5 � 2i

z � x � iy.

z � x � iyz
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The complex conjugate is important because it permits us to switch from complex
to real. Indeed, by multiplication, (verify!). By addition and subtraction,

We thus obtain for the real part x and the imaginary part y
(not iy!) of the important formulas

(8)

If z is real, then by the definition of and conversely. Working with
conjugates is easy, since we have

(9)

E X A M P L E  3 Illustration of (8) and (9)

Let and Then by (8),

Also, the multiplication formula in (9) is verified by

� z1z2 � (4 � 3i)(2 � 5i) � �7 � 26i.

 (z1z2) � (4 � 3i)(2 � 5i) � (�7 � 26i) � �7 � 26i,

Im z1 �
1

2i
 [(4 � 3i) � (4 � 3i)] �

3i � 3i

2i
� 3.

z2 � 2 � 5i.z1 � 4 � 3i

 (z1z2) � z1z2,    az1

z2
b �

z1

z2
  .

 (z1 � z2) � z1 � z2,  (z1 � z2) � z1 � z2,

z,z � zz � x,

Re z � x � 1
2 (z � z),  Im z � y �

1
2i (z � z).

z � x � iy
z � z � 2iy.z � z � 2x,

zz � x2 � y2

1. Powers of i. Show that 
and 

2. Rotation. Multiplication by i is geometrically a
counterclockwise rotation through . Verifyp>2 (90°)

1>i � �i, 1>i2 � �1, 1>i3 � i, Á .i5 � i, Á
i2 � �1, i3 � �i, i4 � 1, this by graphing z and iz and the angle of rotation for

3. Division. Verify the calculation in (7). Apply (7) to
(26 � 18i)>(6 � 2i).

z � 1 � i, z � �1 � 2i, z � 4 � 3i.

P R O B L E M  S E T  1 3 . 1



13.2 Polar Form of Complex Numbers. 
Powers and Roots

We gain further insight into the arithmetic operations of complex numbers if, in addition
to the xy-coordinates in the complex plane, we also employ the usual polar coordinates
r, defined by

(1)

We see that then takes the so-called polar form

(2)

r is called the absolute value or modulus of z and is denoted by Hence

(3)

Geometrically, is the distance of the point z from the origin (Fig. 323). Similarly,
is the distance between and (Fig. 324).

is called the argument of z and is denoted by arg z. Thus and (Fig. 323)

(4)

Geometrically, is the directed angle from the positive x-axis to OP in Fig. 323. Here, as
in calculus, all angles are measured in radians and positive in the counterclockwise sense.

u

(z � 0).tan u �
y
x  

u � arg zu

z2z1ƒ z1 � z2 ƒ
ƒ z ƒ

ƒ z ƒ � r � 2x2 � y2 � 1zz.

ƒ z ƒ .

z � r(cos u � i sin u).

z � x � iy

x � r cos u,   y � r sin u.

u
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4. Law for conjugates. Verify (9) for 

5. Pure imaginary number. Show that is
pure imaginary if and only if 

6. Multiplication. If the product of two complex numbers
is zero, show that at least one factor must be zero.

7. Laws of addition and multiplication. Derive the
following laws for complex numbers from the cor-
responding laws for real numbers.

(Commutative laws)

(Associative laws)

(Distributive law)

z � (�z) � (�z) � z � 0,    z # 1 � z.

0 � z � z � 0 � z,

z1(z2 � z3) � z1z2 � z1z3

(z1z2)z3 � z1(z2z3)

(z1 � z2) � z3 � z1 � (z2 � z3),

z1 � z2 � z2 � z1, z1z2 � z2z1

z � �z.
z � x � iy

z2 � �1 � 4i.
z1 � �11 � 10i, 8–15 COMPLEX ARITHMETIC

Let Showing the details of
your work, find, in the form 

8. 9.

10.

11.

12.

13.

14.

15.

16–20 Let Showing details, find, in terms
of x and y:

16. 17.

18. 19.

20. Im (1>z2)

Re (z>z), Im (z>z)Re [(1 � i)16z2]

Re z4 � (Re z2)2Im (1>z), Im (1>z2)

z � x � iy.

4 (z1 � z2)>(z1 � z2)

z1>z2, (z1>z2)

(z1 � z2)(z1 � z2), z1
2 � z2

2

z1>z2, z2>z1

(z1 � z2)2>16, (z1>4 � z2>4)2

Re (1>z2
2), 1>Re (z2

2)

Re (z1
2), (Re z1)2z1z2, (z1z2)

x � iy:
z1 � �2 � 11i, z2 � 2 � i.



For this angle is undefined. (Why?) For a given it is determined only up
to integer multiples of since cosine and sine are periodic with period . But one
often wants to specify a unique value of arg z of a given . For this reason one defines
the principal value Arg z (with capital A!) of arg z by the double inequality

(5)

Then we have Arg for positive real which is practical, and Arg (not
) for negative real z, e.g., for The principal value (5) will be important in

connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously,
for a given the other values of arg z � Arg z � 2np (n � �1, �2, Á ).arg z arez � 0,

z � �4.�p!
z � pz � x,z � 0

�p � Arg z � p.

z � 0
2p2p

z � 0uz � 0
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E X A M P L E  1 Polar Form of Complex Numbers. Principal Value Arg z

(Fig. 325) has the polar form . Hence we obtain

and (the principal value).

Similarly, and 

CAUTION! In using (4), we must pay attention to the quadrant in which z lies, since
has period , so that the arguments of z and have the same tangent. Example:

for and we have tan u1 � tan u2 � 1.u2 � arg (�1 � i)u1 � arg (1 � i)
�zptan u

�Arg z � 1
3p.z � 3 � 323i � 6 (cos 13p � i sin 13p), ƒ z ƒ � 6,

Arg z � 1
4pƒ z ƒ � 22, arg z � 1

4p � 2np (n � 0, 1, Á ),

z � 22 (cos 14p � i sin 14p)z � 1 � i

Fig. 323. Complex plane, polar form Fig. 324. Distance between two 
of a complex number points in the complex plane 

y

x

z
2

z
1

|z
1 – z

2|

|z 1|

|z
2|

y

xO

P

θ
|z| = r

Imaginary
axis

Real
axis

z = x + iy

Triangle Inequality
Inequalities such as make sense for real numbers, but not in complex because there
is no natural way of ordering complex numbers. However, inequalities between absolute values
(which are real!), such as (meaning that is closer to the origin than ) are of
great importance. The daily bread of the complex analyst is the triangle inequality

(6) (Fig. 326)

which we shall use quite frequently. This inequality follows by noting that the three
points 0, and are the vertices of a triangle (Fig. 326) with sides and

and one side cannot exceed the sum of the other two sides. A formal proof is
left to the reader (Prob. 33). (The triangle degenerates if and lie on the same straight
line through the origin.)

z2z1

ƒ z1 � z2 ƒ ,
ƒ z1 ƒ , ƒ z2 ƒ ,z1 � z2z1,

ƒ z1 � z2 ƒ � ƒ z1 ƒ � ƒ z2 ƒ

z2z1ƒ z1 ƒ � ƒ z2 ƒ

x1 � x2

y

x

1

1

1 + i

/4π

2

Fig. 325. Example 1



By induction we obtain from (6) the generalized triangle inequality

(6*)

that is, the absolute value of a sum cannot exceed the sum of the absolute values of the terms.

E X A M P L E  2 Triangle Inequality

If and then (sketch a figure!)

Multiplication and Division in Polar Form
This will give us a “geometrical” understanding of multiplication and division. Let

Multiplication. By (3) in Sec. 13.1 the product is at first

The addition rules for the sine and cosine [(6) in App. A3.1] now yield

(7)

Taking absolute values on both sides of (7), we see that the absolute value of a product
equals the product of the absolute values of the factors,

(8)

Taking arguments in (7) shows that the argument of a product equals the sum of the
arguments of the factors,

(9) (up to multiples of ).

Division. We have Hence and by
division by 

(10) (z2 � 0).` z1

z2
` �

ƒ z1 ƒ
ƒ z2 ƒ

ƒ z2 ƒ
ƒ z1 ƒ � ƒ (z1>z2) z2 ƒ � ƒ z1>z2 ƒ ƒ z2 ƒz1 � (z1>z2)z2.

2parg (z1z2) � arg z1 � arg z2

ƒ z1z2 ƒ � ƒ z1 ƒ ƒ z2 ƒ .

z1z2 � r1r2 [cos (u1 � u2) � i sin (u1 � u2)].

z1z2 � r1r2[(cos u1 cos u2 � sin u1 sin u2) � i (sin u1 cos u2 � cos u1 sin u2)].

z1 � r1(cos u1 � i sin u1)   and   z2 � r2(cos u2 � i sin u2).

�ƒ z1 � z2 ƒ � ƒ�1 � 4i ƒ � 117 � 4.123 � 12 � 113 � 5.020.

z2 � �2 � 3i,z1 � 1 � i

ƒ z1 � z2 � Á � zn ƒ � ƒ z1 ƒ � ƒ z2 ƒ  � Á � ƒ zn ƒ ;

SEC. 13.2 Polar Form of Complex Numbers. Powers and Roots 615

y

x

z
2

z
1

z
1 

+ z
2

Fig. 326. Triangle inequality



Similarly, and by subtraction of arg 

(11) (up to multiples of ).

Combining (10) and (11) we also have the analog of (7),

(12)

To comprehend this formula, note that it is the polar form of a complex number of absolute
value and argument But these are the absolute value and argument of 
as we can see from (10), (11), and the polar forms of and 

E X A M P L E  3 Illustration of Formulas (8)–(11)

Let and Then . Hence (make a sketch)

and for the arguments we obtain 

.

E X A M P L E  4 Integer Powers of z. De Moivre’s Formula

From (8) and (9) with we obtain by induction for 

(13)

Similarly, (12) with and gives (13) for For formula (13) becomes
De Moivre’s formula3

(13*)

We can use this to express and in terms of powers of and . For instance, for we
have on the left Taking the real and imaginary parts on both sides of 
with gives the familiar formulas

This shows that complex methods often simplify the derivation of real formulas. Try .

Roots
If then to each value of w there corresponds one value of z. We
shall immediately see that, conversely, to a given there correspond precisely n
distinct values of w. Each of these values is called an nth root of z, and we write

z � 0
z � wn (n � 1, 2, Á ),

�n � 3

cos 2u � cos2 u � sin2 u,  sin 2u � 2 cos u sin u.

n � 2
(13*)cos2 u � 2i cos u sin u � sin2 u.

n � 2sin ucos usin nucos nu

(cos u � i sin u)n � cos nu � i sin nu.

ƒ z ƒ � r � 1,n � �1, �2, Á .z2 � znz1 � 1

zn � r n (cos nu � i sin nu).

n � 0, 1, 2, Áz1 � z2 � z

�Arg (z1z2) � � 

3p

4
� Arg z1 � Arg z2 � 2p,  Arg az1

z2
b �
p

4
� Arg z1 � Arg z2

Arg z1 � 3p>4, Arg z2 � p>2,

ƒ z1z2 ƒ � 612 � 318 � ƒ z1 ƒ ƒ z2 ƒ ,  ƒ z1>z2 ƒ � 212>3 � ƒ z1 ƒ > ƒ z2 ƒ ,

z1z2 � �6 � 6i, z1>z2 � 2
3 � (2

3)iz2 � 3i.z1 � �2 � 2i

z2.z1

z1>z2,u1 � u2.r1>r2

z1

z2
�

r1

r2
 [cos (u1 � u2) � i sin (u1 � u2)].

2parg 
z1

z2
� arg z1 � arg z2

z2arg z1 � arg [(z1>z2)z2] � arg (z1>z2) � arg z2
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3ABRAHAM DE MOIVRE (1667–1754), French mathematician, who pioneered the use of complex numbers
in trigonometry and also contributed to probability theory (see Sec. 24.8).



(14)

Hence this symbol is multivalued, namely, n-valued. The n values of can be obtained
as follows. We write z and w in polar form

Then the equation becomes, by De Moivre’s formula (with instead of ),

The absolute values on both sides must be equal; thus, so that where
is positive real (an absolute value must be nonnegative!) and thus uniquely determined.

Equating the arguments and and recalling that is determined only up to integer
multiples of , we obtain

where k is an integer. For we get n distinct values of w. Further integers
of k would give values already obtained. For instance, gives , hence
the w corresponding to , etc. Consequently, for , has the n distinct values

(15)

where These n values lie on a circle of radius with center at the
origin and constitute the vertices of a regular polygon of n sides. The value of obtained
by taking the principal value of arg z and in (15) is called the principal value of

.
Taking in (15), we have and Arg Then (15) gives

(16)

These n values are called the nth roots of unity. They lie on the circle of radius 1 and
center 0, briefly called the unit circle (and used quite frequently!). Figures 327–329 show

23 1 � 1, �1
2 � 1

223i, 24 1 � �1, �i, and25 1.

k � 0, 1, Á , n � 1.2
n

1 � cos 
2kp

n � i sin 
2kp

n ,

z � 0.ƒ z ƒ � r � 1z � 1
w � 1

n
z

k � 0
1
n

z
1
n

rk � 0, 1, Á , n � 1.

1
n z � 1

n r acos 
u � 2kp

n � i sin 
u � 2kp

n b

z � 01
n

z ,k � 0
2kp>n � 2pk � n

k � 0, 1, Á , n � 1

n� � u � 2kp,   thus   � �
u
n �

2kp
n

2p
uun�

1
n

r
R � 1

n
r ,Rn � r,

wn � Rn(cos n� � i sin n�) � z � r(cos u � i sin u).

u�wn � z

z � r(cos u � i sin u)   and   w � R(cos � � i sin �).

1
n

z

w � 1
n

z .  
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If denotes the value corresponding to in (16), then the n values of can be
written as

More generally, if is any nth root of an arbitrary complex number then the n
values of in (15) are

(17)

because multiplying by corresponds to increasing the argument of by .
Formula (17) motivates the introduction of roots of unity and shows their usefulness.

2kp>nw1vkw1

w1,  w1v,  w1v
2,  Á ,  w1v

n�1

1
n

z
z (� 0),w1

1, v, v2, Á , vn�1.

2
n

1k � 1v
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1–8 POLAR FORM
Represent in polar form and graph in the complex plane as
in Fig. 325. Do these problems very carefully because polar
forms will be needed frequently. Show the details.

1. 2.

3. 4.

5. 6.

7. 8.

9–14 PRINCIPAL ARGUMENT
Determine the principal value of the argument and graph it
as in Fig. 325.

9. 10.

11. 12.

13. 14.

15–18 CONVERSION TO 
Graph in the complex plane and represent in the form 

15. 16.

17.

18.

ROOTS

19. CAS PROJECT. Roots of Unity and Their Graphs.
Write a program for calculating these roots and for
graphing them as points on the unit circle. Apply the
program to with Then extend
the program to one for arbitrary roots, using an idea
near the end of the text, and apply the program to
examples of your choice.

n � 2, 3, Á , 10.zn � 1

250 (cos 34p � i sin 34p)

28 (cos 14p � i sin 14p)

6 (cos 13p � i sin 13p)3 (cos 12p � i sin 12p)

x � iy:

x � iy

�1 � 0.1i, �1 � 0.1i(1 � i)20

�p � pi3 � 4i

�5, �5 � i, �5 � i�1 � i

�4 � 19i

2 � 5i
1 � 1

2pi

23 � 10i

�1
223 � 5i

22 � i>3
�28 � 2i>3

�52i, �2i

�4 � 4i1 � i

20. TEAM PROJECT. Square Root. (a) Show that
has the values

(18)

(b) Obtain from (18) the often more practical formula

(19)

where sign if sign if and
all square roots of positive numbers are taken with
positive sign. Hint: Use (10) in App. A3.1 with 

(c) Find the square roots of and
by both (18) and (19) and comment on the

work involved.

(d) Do some further examples of your own and apply
a method of checking your results.

21–27 ROOTS
Find and graph all roots in the complex plane.

21. 22.

23. 24.

25. 26. �8 1� 27.

28–31 EQUATIONS
Solve and graph the solutions. Show details.

28.

29.

30. Using the solutions, factor 
into quadratic factors with real coefficients.

31. z4 � 6iz2 � 16 � 0

z4 � 324z4 � 324 � 0.

z2 � z � 1 � i � 0

z2 � (6 � 2i) z � 17 � 6i � 0

25 �124 i

24 �423 216

23 3 � 4i23 1 � i

1 � 248i
�14i, �9 � 40i,

x � u>2.

y � 0,y � �1y 	 0,y � 1

2z � �[21
2( ƒ z ƒ � x) � (sign y)i21

2( ƒ z ƒ � x)]

 � �w1.

 w2 � 1r c cos au
2

� pb � i sin au
2

� pb d

 w1 � 1r c cos  
u

2
� i sin 

u

2 d ,
w � 1z
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13.3 Derivative. Analytic Function
Just as the study of calculus or real analysis required concepts such as domain,
neighborhood, function, limit, continuity, derivative, etc., so does the study of complex
analysis. Since the functions live in the complex plane, the concepts are slightly more
difficult or different from those in real analysis. This section can be seen as a reference
section where many of the concepts needed for the rest of Part D are introduced.

Circles and Disks. Half-Planes
The unit circle (Fig. 330) has already occurred in Sec. 13.2. Figure 331 shows a
general circle of radius and center a. Its equation is

ƒ z � a ƒ � r

r

ƒ z ƒ � 1

SEC. 13.3 Derivative. Analytic Function 619

32–35 INEQUALITIES AND EQUALITY

32. Triangle inequality. Verify (6) for 

33. Triangle inequality. Prove (6).

z2 � �2 � 4i
z1 � 3 � i,

34. Re and Im. Prove 

35. Parallelogram equality. Prove and explain the name

ƒ z1 � z2 ƒ 2 � ƒ z1 � z2 ƒ 2 � 2 ( ƒ z1 ƒ 2 � ƒ z2 ƒ 2).

ƒRe z ƒ � ƒ z ƒ , ƒ Im z ƒ � ƒ z ƒ .

y

x1

y

x

ρ
a

a

y

x

1
ρ

2
ρ

Fig. 330. Unit circle Fig. 331. Circle in the Fig. 332. Annulus in the 
complex plane complex plane

because it is the set of all z whose distance from the center a equals Accordingly,
its interior (“open circular disk”) is given by its interior plus the circle
itself (“closed circular disk”) by and its exterior by As an
example, sketch this for and to make sure that you understand these
inequalities.

An open circular disk is also called a neighborhood of a or, more precisely,
a -neighborhood of a. And a has infinitely many of them, one for each value of 
and a is a point of each of them, by definition!

In modern literature any set containing a -neighborhood of a is also called a neigh-
borhood of a.

Figure 332 shows an open annulus (circular ring) which we shall
need later. This is the set of all z whose distance from a is greater than but
less than . Similarly, the closed annulus includes the two circles.

Half-Planes. By the (open) upper half-plane we mean the set of all points 
such that . Similarly, the condition defines the lower half-plane, the
right half-plane, and the left half-plane.x � 0

x 
 0y � 0y 
 0
z � x � iy

r1 � ƒ z � a ƒ � r2r2

r1ƒ z � a ƒ
r1 � ƒ z � a ƒ � r2,

r

r (
 0),r

ƒ z � a ƒ � r

r � 2,a � 1 � i
ƒ z � a ƒ 
 r.ƒ z � a ƒ � r,

ƒ z � a ƒ � r,
r.ƒ z � a ƒ



For Reference: Concepts on Sets 
in the Complex Plane
To our discussion of special sets let us add some general concepts related to sets that we
shall need throughout Chaps. 13–18; keep in mind that you can find them here.

By a point set in the complex plane we mean any sort of collection of finitely many
or infinitely many points. Examples are the solutions of a quadratic equation, the
points of a line, the points in the interior of a circle as well as the sets discussed just
before.

A set S is called open if every point of S has a neighborhood consisting entirely of
points that belong to S. For example, the points in the interior of a circle or a square form
an open set, and so do the points of the right half-plane Re 

A set S is called connected if any two of its points can be joined by a chain of finitely
many straight-line segments all of whose points belong to S. An open and connected set
is called a domain. Thus an open disk and an open annulus are domains. An open square
with a diagonal removed is not a domain since this set is not connected. (Why?)

The complement of a set S in the complex plane is the set of all points of the complex
plane that do not belong to S. A set S is called closed if its complement is open. For example,
the points on and inside the unit circle form a closed set (“closed unit disk”) since its
complement is open.

A boundary point of a set S is a point every neighborhood of which contains both points
that belong to S and points that do not belong to S. For example, the boundary points of
an annulus are the points on the two bounding circles. Clearly, if a set S is open, then no
boundary point belongs to S; if S is closed, then every boundary point belongs to S. The
set of all boundary points of a set S is called the boundary of S.

A region is a set consisting of a domain plus, perhaps, some or all of its boundary points.
WARNING! “Domain” is the modern term for an open connected set. Nevertheless, some
authors still call a domain a “region” and others make no distinction between the two terms.

Complex Function
Complex analysis is concerned with complex functions that are differentiable in some
domain. Hence we should first say what we mean by a complex function and then define
the concepts of limit and derivative in complex. This discussion will be similar to that in
calculus. Nevertheless it needs great attention because it will show interesting basic
differences between real and complex calculus.

Recall from calculus that a real function f defined on a set S of real numbers (usually an
interval) is a rule that assigns to every x in S a real number f(x), called the value of f at x.
Now in complex, S is a set of complex numbers. And a function f defined on S is a rule
that assigns to every z in S a complex number w, called the value of f at z. We write

Here z varies in S and is called a complex variable. The set S is called the domain of
definition of f or, briefly, the domain of f. (In most cases S will be open and connected,
thus a domain as defined just before.)

Example: is a complex function defined for all z; that is, its domain
S is the whole complex plane.

The set of all values of a function f is called the range of f.

w � f (z) � z2 � 3z

w � f (z).

|z ƒ 
 1

z � x 
 0.
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w is complex, and we write where u and v are the real and imaginary
parts, respectively. Now w depends on Hence u becomes a real function of x
and y, and so does v. We may thus write

This shows that a complex function f (z) is equivalent to a pair of real functions 
and , each depending on the two real variables x and y.

E X A M P L E  1 Function of a Complex Variable

Let Find u and v and calculate the value of f at .

Solution. and Also,

This shows that and Check this by using the expressions for u and v.

E X A M P L E  2 Function of a Complex Variable

Let Find u and v and the value of f at 

Solution. gives and Also,

Check this as in Example 1.

Remarks on Notation and Terminology

1. Strictly speaking, f(z) denotes the value of f at z, but it is a convenient abuse of
language to talk about the function f (z) (instead of the function f ), thereby exhibiting the
notation for the independent variable.

2. We assume all functions to be single-valued relations, as usual: to each z in S there
corresponds but one value (but, of course, several z may give the same value

just as in calculus). Accordingly, we shall not use the term “multivalued
function” (used in some books on complex analysis) for a multivalued relation, in which
to a z there corresponds more than one w.

Limit, Continuity
A function f (z) is said to have the limit l as z approaches a point z0, written

(1)

if f is defined in a neighborhood of (except perhaps at z0 itself) and if the values of 
f are “close” to l for all z “close” to in precise terms, if for every positive real we can
find a positive real such that for all in the disk (Fig. 333) we have

(2)

geometrically, if for every in that -disk the value of f lies in the disk (2).
Formally, this definition is similar to that in calculus, but there is a big difference.

Whereas in the real case, x can approach an x0 only along the real line, here, by definition,

dz � z0

ƒ f (z) � l ƒ � P;

ƒ z � z0 ƒ � dz � z0d

Pz0;
z0

lim
z:z0  

f (z) � l,

w � f (z),
w � f (z)

�

f (1
2 � 4i) � 2i(1

2 � 4i) � 6(1
2 � 4i) � i � 8 � 3 � 24i � �5 � 23i.

v(x, y) � 2x � 6y.u(x, y) � 6x � 2yf (z) � 2i(x � iy) � 6(x � iy)

z � 1
2 � 4i.w � f (z) � 2iz � 6z.

�v(1, 3) � 15.u(1, 3) � �5

f (1 � 3i) � (1 � 3i)2 � 3(1 � 3i) � 1 � 9 � 6i � 3 � 9i � �5 � 15i.

v � 2xy � 3y.u � Re f (z) � x2 � y2 � 3x

z � 1 � 3iw � f (z) � z2 � 3z.

v(x, y)
u(x, y)

w � f (z) � u(x, y) � iv(x, y).

z � x � iy.
w � u � iv,
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Derivative
The derivative of a complex function f at a point is written and is defined by

(4)

provided this limit exists. Then f is said to be differentiable at . If we write ,
we have and (4) takes the form

Now comes an important point. Remember that, by the definition of limit, f (z) is defined
in a neighborhood of and z in ( ) may approach from any direction in the complex
plane. Hence differentiability at z0 means that, along whatever path z approaches , the
quotient in ( ) always approaches a certain value and all these values are equal. This is
important and should be kept in mind.

E X A M P L E  3 Differentiability. Derivative

The function is differentiable for all z and has the derivative because

�lim
¢z:0

 
z2 � 2z ¢z � (¢z)2 � z2

¢z
� lim

¢z:0
 (2z � ¢z) � 2z.f r(z) � lim

¢z:0
 
(z � ¢z)2 � z2

¢z
�

f r(z) � 2zf (z) � z2

4r
z0

z04rz0

f r(z0) � lim
z:z0 

 
f (z) � f (z0)

z � z0
.(4r)

z � z0 � ¢z
¢z � z � z0z0

f r(z0) � lim
¢z:0

 
f (z0 � ¢z) � f (z0)

¢z

f r(z0)z0

y

x

v

u

z

z
0δ

f (z)
lŒ

Fig. 333. Limit

z may approach from any direction in the complex plane. This will be quite essential
in what follows.

If a limit exists, it is unique. (See Team Project 24.)

A function f (z) is said to be continuous at if is defined and

(3)

Note that by definition of a limit this implies that f (z) is defined in some neighborhood
of .

f (z) is said to be continuous in a domain if it is continuous at each point of this domain.
z0

lim
z:z0   

f (z) � f (z0).

f (z0)z � z0

z0
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The differentiation rules are the same as in real calculus, since their proofs are literally
the same. Thus for any differentiable functions f and g and constant c we have

as well as the chain rule and the power rule (n integer).
Also, if f(z) is differentiable at z0, it is continuous at . (See Team Project 24.)

E X A M P L E  4 not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For
instance, is such a function. To see this, we write and obtain

(5)

If this is . If this is Thus (5) approaches along path I in Fig. 334 but along
path II. Hence, by definition, the limit of (5) as does not exist at any z. �¢z: 0

�1�1�1.¢x � 0,�1¢y � 0,

f (z � ¢z) � f (z)

¢z
�

(z � ¢z) � z

¢z
�

¢z

¢z
�

¢x � i ¢y

¢x � i ¢y
 .

¢z � ¢x � i ¢yf (z) � z � x � iy

z

z0

(zn)r � nzn�1

(cf )r � cf r, ( f � g)r � f r � gr, ( fg)r � f rg � fgr, a f
gbr �

f rg � fgr
g2
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Fig. 334. Paths in (5)

y

x

ΙΙ

Ι

z + Δz

z

Surprising as Example 4 may be, it merely illustrates that differentiability of a complex
function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used
again as the crucial argument in the next section.

Analytic Functions
Complex analysis is concerned with the theory and application of “analytic functions,”
that is, functions that are differentiable in some domain, so that we can do “calculus in
complex.” The definition is as follows.

D E F I N I T I O N Analyticity

A function is said to be analytic in a domain D if f (z) is defined and differentiable
at all points of D. The function f (z) is said to be analytic at a point in D if
f (z) is analytic in a neighborhood of .

Also, by an analytic function we mean a function that is analytic in some domain.

Hence analyticity of f (z) at means that f(z) has a derivative at every point in some
neighborhood of (including itself since, by definition, is a point of all its
neighborhoods). This concept is motivated by the fact that it is of no practical interest
if a function is differentiable merely at a single point but not throughout some
neighborhood of . Team Project 24 gives an example.

A more modern term for analytic in D is holomorphic in D.
z0

z0

z0z0z0

z0

z0

z � z0

f (z)



E X A M P L E  5 Polynomials, Rational Functions

The nonnegative integer powers are analytic in the entire complex plane, and so are polynomials,
that is, functions of the form

where are complex constants.
The quotient of two polynomials and 

is called a rational function. This f is analytic except at the points where here we assume that common
factors of g and h have been canceled.

Many further analytic functions will be considered in the next sections and chapters.

The concepts discussed in this section extend familiar concepts of calculus. Most
important is the concept of an analytic function, the exclusive concern of complex
analysis. Although many simple functions are not analytic, the large variety of remaining
functions will yield a most beautiful branch of mathematics that is very useful in
engineering and physics.

�

h(z) � 0;

f (z) �
g(z)

h(z)
,

h(z),g(z)
c0, Á , cn

f (z) � c0 � c1z � c2z2 � Á � cnzn

1, z, z2, Á
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1–8 REGIONS OF PRACTICAL INTEREST
Determine and sketch or graph the sets in the complex plane
given by

1.

2.

3.

4.

5.

6.

7.

8.

9. WRITING PROJECT. Sets in the Complex Plane.
Write a report by formulating the corresponding
portions of the text in your own words and illustrating
them with examples of your own.

COMPLEX FUNCTIONS AND THEIR DERIVATIVES

10–12 Function Values. Find Re f, and Im f and their
values at the given point z.

10.

11.

12.

13. CAS PROJECT. Graphing Functions. Find and graph
Re f, Im f, and as surfaces over the z-plane. Also
graph the two families of curves andRe f (z) � const

ƒ f ƒ

f (z) � (z � 2)>(z � 2) at 8i

f (z) � 1>(1 � z) at 1 � i

f (z) � 5z2 � 12z � 3 � 2i at 4 �  3i

ƒ z � i ƒ 	 ƒ z � i ƒ
Re  z 	 �1

Re (1>z) � 1

ƒ arg  z ƒ � 1
4p

�p � Im  z � p

p � ƒ z � 4 � 2i ƒ � 3p

0 � ƒ z ƒ � 1

ƒ z � 1 � 5i ƒ � 3
2

in the same figure, and the curves
in another figure, where (a)

(b) , (c) 

14–17 Continuity. Find out, and give reason, whether
f (z) is continuous at and for the
function f is equal to:

14. 15.

16. 17.

18–23 Differentiation. Find the value of the derivative
of

18. 19.

20. at any z. Explain the result.

21. at 0

22. at 2i 23.

24. TEAM PROJECT. Limit, Continuity, Derivative

(a) Limit. Prove that (1) is equivalent to the pair of
relations

(b) Limit. If exists, show that this limit is
unique.

(c) Continuity. If are complex numbers for
which and if f(z) is continuous at 
show that lim

n:�   

f (zn) � f (a).
z � a,lim

n:�  
zn � a,

z1, z2, Á

lim
z:z0   

f (x)

lim
z:z0  

Re f (z) � Re l,  lim
z:z0  

Im f (z) �  Im l.

z3>(z � i)3 at i(iz3 � 3z2)3

i(1 � z)n

(1.5z � 2i)>(3iz � 4)

(z � 4i)8 at � 3 � 4i(z � i)>(z � i) at i

(Re  z)>(1 � ƒ z ƒ )(Im z2)> ƒ z ƒ 2
ƒ z ƒ 2 Im (1>z)(Re z2)> ƒ z ƒ

z � 0z � 0 if f (0) � 0

f (z) � z4.f (z) � 1>z
f (z) � z2,ƒ f (z) ƒ � const

Im f (z) � const
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13.4 Cauchy–Riemann Equations. 
Laplace’s Equation

As we saw in the last section, to do complex analysis (i.e., “calculus in the complex”) on
any complex function, we require that function to be analytic on some domain that is
differentiable in that domain.

The Cauchy–Riemann equations are the most important equations in this chapter
and one of the pillars on which complex analysis rests. They provide a criterion (a test)
for the analyticity of a complex function

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and 
satisfy the two Cauchy–Riemann equations4

(1)

everywhere in D; here and (and similarly for v) are the usual
notations for partial derivatives. The precise formulation of this statement is given in
Theorems 1 and 2.

Example: is analytic for all z (see Example 3 in Sec. 13.3),
and and satisfy (1), namely, as well as 

. More examples will follow.

T H E O R E M  1 Cauchy–Riemann Equations

Let be defined and continuous in some neighborhood of a
point and differentiable at z itself. Then, at that point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy–Riemann equations (1).

Hence, if is analytic in a domain D, those partial derivatives exist and satisfy
(1) at all points of D.

f (z)

z � x � iy
f (z) � u(x, y) � iv(x, y)

�2y � �vx

uy �ux � 2x � vyv � 2xyu � x2 � y2
f (z) � z2 � x2 � y2 � 2ixy

uy � 0u>0yux � 0u>0x

ux � vy,     uy � �vx

v

w � f (z) � u(x, y) � iv(x, y).
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(d) Continuity. If is differentiable at show that
f (z) is continuous at 

(e) Differentiability. Show that is not
differentiable at any z. Can you find other such functions?

(f) Differentiability. Show that is dif-
ferentiable only at hence it is nowhere analytic.z � 0;

f (z) � ƒ z ƒ 2

f (z) � Re z � x

z0.
z0,f (z) 25. WRITING PROJECT. Comparison with Calculus.

Summarize the second part of this section beginning with
Complex Function, and indicate what is conceptually
analogous to calculus and what is not.

4The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians
BERNHARD RIEMANN (1826–1866) and KARL WEIERSTRASS (1815–1897; see also Sec. 15.5) are the
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Göttingen, where
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is
used in basic calculus courses, and made important contributions to differential equations, number theory, and
mathematical physics. He also developed the so-called Riemannian geometry, which is the mathematical
foundation of Einstein’s theory of relativity; see Ref. [GenRef9] in App. 1.



P R O O F By assumption, the derivative at z exists. It is given by

(2)

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3),
we can let approach zero along any path in a neighborhood of z. Thus we may choose
the two paths I and II in Fig. 335 and equate the results. By comparing the real parts we
shall obtain the first Cauchy–Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

We write . Then and in terms of u
and v the derivative in (2) becomes

(3) .

We first choose path I in Fig. 335. Thus we let first and then . After 
is zero, . Then (3) becomes, if we first write the two u-terms and then the two
v-terms,

f r(z) � lim
¢x:0

 
u(x � ¢x, y) � u(x, y)

¢x
� i lim

¢x:0
 
v(x � ¢x, y) � v(x, y)

¢x
 .

¢z � ¢x
¢y¢x: 0¢y: 0

f r(z) � lim
¢z:0 

[u(x � ¢x, y � ¢y) � iv(x � ¢x, y � ¢y)] � [u(x, y) � iv(x, y)]

¢x � i ¢y

z � ¢z � x � ¢x � i(y � ¢y),¢z � ¢x � i ¢y

¢z

f r(z) � lim
¢z:0

 
f (z � ¢z) � f (z)

¢z
 .

f r(z)
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y

x

ΙΙ

Ι

z + Δz

z

Fig. 335. Paths in (2)

Since exists, the two real limits on the right exist. By definition, they are the partial
derivatives of u and v with respect to x. Hence the derivative of f(z) can be written

(4)

Similarly, if we choose path II in Fig. 335, we let first and then . After
is zero, , so that from (3) we now obtain

Since exists, the limits on the right exist and give the partial derivatives of u and v
with respect to y; noting that we thus obtain

(5)

The existence of the derivative thus implies the existence of the four partial derivatives
in (4) and (5). By equating the real parts and in (4) and (5) we obtain the firstvyux

f r(z)

f r(z) � �iuy � vy.

1>i � �i,
f r(z)

f r(z) � lim
¢y:0

 
u(x, y � ¢y) � u(x, y)

i ¢y
� i lim

¢y:0
 
v(x, y � ¢y) � v(x, y)

i ¢y
 .

¢z � i ¢y¢x
¢y: 0¢x: 0

f r(z) � ux � ivx.

f r(z)
f r(z)



Cauchy–Riemann equation (1). Equating the imaginary parts gives the other. This proves
the first statement of the theorem and implies the second because of the definition of
analyticity.

Formulas (4) and (5) are also quite practical for calculating derivatives as we shall see.

E X A M P L E  1 Cauchy–Riemann Equations

is analytic for all z. It follows that the Cauchy–Riemann equations must be satisfied (as we have
verified above).

For we have and see that the second Cauchy–Riemann equation is satisfied,
but the first is not: We conclude that is not analytic, confirming

Example 4 of Sec. 13.3. Note the savings in calculation!

The Cauchy–Riemann equations are fundamental because they are not only necessary but
also sufficient for a function to be analytic. More precisely, the following theorem holds.

T H E O R E M  2 Cauchy–Riemann Equations

If two real-valued continuous functions and of two real variables x
and y have continuous first partial derivatives that satisfy the Cauchy–Riemann
equations in some domain D, then the complex function is
analytic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see App. 4).
Theorems 1 and 2 are of great practical importance, since, by using the Cauchy–Riemann

equations, we can now easily find out whether or not a given complex function is analytic.

E X A M P L E  2 Cauchy–Riemann Equations. Exponential Function

Is analytic?

Solution. We have and by differentiation

We see that the Cauchy–Riemann equations are satisfied and conclude that f (z) is analytic for all z. ( f (z) will
be the complex analog of known from calculus.)

E X A M P L E  3 An Analytic Function of Constant Absolute Value Is Constant

The Cauchy–Riemann equations also help in deriving general properties of analytic functions.
For instance, show that if is analytic in a domain D and in D, then in

D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption, By differentiation,

Now use in the first equation and in the second, to get

(6)
(a)

(b)  uuy � vux � 0.

 uux � vuy � 0,

vy � uxvx � �uy

 uuy � vvy � 0.

 uux � vvx � 0,

ƒ f ƒ 2 � ƒu � iv ƒ 2 � u2 � v2 � k2.

f (z) � constƒ f (z) ƒ � k � constf (z)

�ex

 uy � �ex sin y,    vx � ex sin y.

 ux � ex cos y,    vy � ex cos y

u � ex
 cos y, v � ex sin y

f (z) � u(x, y) � iv(x, y) � ex(cos y � i sin y)

f (z) � u(x, y) � iv(x, y)

v(x, y)u(x, y)

�
f (z) � zux � 1 � vy � �1.uy � �vx � 0,

u � x, v � �yf (z) � z � x � iy

f (z) � z2

f r(z),

�
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To get rid of , multiply (6a) by u and (6b) by v and add. Similarly, to eliminate , multiply (6a) by and
(6b) by u and add. This yields

If then hence If then Hence, by the
Cauchy–Riemann equations, also Together this implies and ; hence

We mention that, if we use the polar form and set 
, then the Cauchy–Riemann equations are (Prob. 1)

(7)

Laplace’s Equation. Harmonic Functions
The great importance of complex analysis in engineering mathematics results mainly from
the fact that both the real part and the imaginary part of an analytic function satisfy Laplace’s
equation, the most important PDE of physics. It occurs in gravitation, electrostatics, fluid
flow, heat conduction, and other applications (see Chaps. 12 and 18).

T H E O R E M  3 Laplace’s Equation

If is analytic in a domain D, then both u and v satisfy
Laplace’s equation

(8)

( read “nabla squared”) and

(9) ,

in D and have continuous second partial derivatives in D.

P R O O F Differentiating with respect to x and with respect to y, we have

(10)

Now the derivative of an analytic function is itself analytic, as we shall prove later (in
Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders; in
particular, the mixed second derivatives are equal: By adding (10) we thus
obtain (8). Similarly, (9) is obtained by differentiating with respect to y and

with respect to x and subtracting, using 

Solutions of Laplace’s equation having continuous second-order partial derivatives are called
harmonic functions and their theory is called potential theory (see also Sec. 12.11). Hence
the real and imaginary parts of an analytic function are harmonic functions.

�uxy � uyx.uy � �vx

ux � vy

vyx � vxy.

uxx � vyx,     uyy � �vxy.

uy � �vxux � vy

�2v � vxx � vyy � 0

�2

�2u � uxx � uyy � 0

f (z) � u(x, y) � iv(x, y)

 vr � � 
1
r  uu

(r 
 0). ur �
1
r  vu,

iv(r, u)
f (z) � u(r, u) �z � r(cos u � i sin u)

�f � const.
v � constu � constux � vy � 0.

ux � uy � 0.k2 � u2 � v2 � 0,f � 0.u � v � 0;k2 � u2 � v2 � 0,

 (u2 � v2)uy � 0.

 (u2 � v2)ux � 0 ,

�vuxuy
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If two harmonic functions u and v satisfy the Cauchy–Riemann equations in a domain
D, they are the real and imaginary parts of an analytic function f in D. Then v is said to
be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to
do with the use of “conjugate” for 

E X A M P L E  4 How to Find a Harmonic Conjugate Function by the Cauchy–Riemann Equations

Verify that is harmonic in the whole complex plane and find a harmonic conjugate function
v of u.

Solution. by direct calculation. Now and Hence because of the Cauchy–
Riemann equations a conjugate v of u must satisfy

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

.

A comparison with the second equation shows that This gives . Hence 
(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined
up to an arbitrary real additive constant.

The Cauchy–Riemann equations are the most important equations in this chapter. Their
relation to Laplace’s equation opens a wide range of engineering and physical applications,
as shown in Chap. 18.

�f (z) � u � iv � x2 � y2 � y � i(2xy � x � c) � z2 � iz � ic.

v � 2xy � x � ch(x) � x � cdh>dx � 1.

v � 2xy � h(x),   vx � 2y �
dh

dx

vy � ux � 2x,   vx � �uy � 2y � 1.

uy � �2y � 1.ux � 2x�2u � 0

u � x2 � y2 � y

z.)
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1. Cauchy–Riemann equations in polar form. Derive (7)
from (1).

2–11 CAUCHY–RIEMANN EQUATIONS
Are the following functions analytic? Use (1) or (7).

2.

3.

4.

5.

6. 7.

8.

9.

10.

11.

12–19 HARMONIC FUNCTIONS
Are the following functions harmonic? If your answer
is yes, find a corresponding analytic function 

12. 13. u � xyu � x2 � y2

u(x, y) � iv(x, y).
f (z) �

f (z) � cos x cosh y � i sin x sinh y

f (z) � ln ƒ z ƒ � i Arg z

f (z) � 3p2>(z3 � 4p2z)

f (z) � Arg 2pz

f (z) � i>z8f (z) � 1>(z � z5)

f (z) � Re (z2) � i Im (z2)

f (z) � ex (cos y � i sin y)

f (z) � e�2x (cos 2y � i sin 2y)

f (z) � izz

14. 15.

16. 17.

18.

19.

20. Laplace’s equation. Give the details of the derivative
of (9).

21–24 Determine a and b so that the given function is
harmonic and find a harmonic conjugate.

21.

22.

23.

24.

25. CAS PROJECT. Equipotential Lines. Write a
program for graphing equipotential lines of
a harmonic function u and of its conjugate v on the
same axes. Apply the program to (a)

(b)

26. Apply the program in Prob. 25 to 
and to an example of your own.v � ex sin y

u � ex cos y,

u � x3 � 3xy2, v � 3x2y � y3.v � 2xy,
u � x2 � y2,

u � const

u � cosh ax cos y

u � ax3 � bxy

u � cos ax cosh 2y

u � epx cos av

v � ex sin 2y

u � x3 � 3xy2

v � (2x � 1)yu � sin x cosh y

u � x>(x2 � y2)v � xy
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13.5 Exponential Function
In the remaining sections of this chapter we discuss the basic elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when 
is real. They are indispensable throughout applications, and some of them have interesting
properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex exponential
function

also written exp z.

The definition of in terms of the real functions , and is

(1)

This definition is motivated by the fact the extends the real exponential function of
calculus in a natural fashion. Namely:

(A) for real because and when

(B) is analytic for all z. (Proved in Example 2 of Sec. 13.4.)

(C) The derivative of is , that is,

(2)

This follows from (4) in Sec. 13.4,

REMARK. This definition provides for a relatively simple discussion. We could define 
by the familiar series with x replaced by z, but we would
then have to discuss complex series at this very early stage. (We will show the connection
in Sec. 15.4.)

Further Properties. A function that is analytic for all z is called an entire function.
Thus, ez is entire. Just as in calculus the functional relation

(3) ez1�z2 � ez1ez2

f (z)

1 � x � x2>2! � x3>3! � Á
ez

(ez)r � (ex cos y)x � i(ex sin y)x � ex cos y � iex sin y � ez.

(ez)r � ez.

ezez

ez

y � 0.sin y � 0cos y � 1z � xez � ex

exez

ez � ex(cos y � i sin y).

sin yex, cos yez

ez,

z � x
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27. Harmonic conjugate. Show that if u is harmonic and
v is a harmonic conjugate of u, then u is a harmonic
conjugate of v.

28. Illustrate Prob. 27 by an example.

29. Two further formulas for the derivative. Formulas (4),
(5), and (11) (below) are needed from time to time. Derive

(11) f r(z) � ux � iuy,   f r(z) � vy � ivx.

�

30. TEAM PROJECT. Conditions for . Let
be analytic. Prove that each of the following

conditions is sufficient for 

(a)

(b)

(c)

(d) (see Example 3)ƒ f (z) ƒ � const

f r(z) � 0

Im f (z) � const

Re f (z) � const

f (z) � const
f (z)

f (z) � const



holds for any and . Indeed, by (1),

Since for these real functions, by an application of the addition formulas
for the cosine and sine functions (similar to that in Sec. 13.2) we see that

as asserted. An interesting special case of (3) is ; then

(4)

Furthermore, for we have from (1) the so-called Euler formula

(5)

Hence the polar form of a complex number, , may now be written

(6)

From (5) we obtain

(7)

as well as the important formulas (verify!)

(8)

Another consequence of (5) is

(9)

That is, for pure imaginary exponents, the exponential function has absolute value 1, a
result you should remember. From (9) and (1),

(10) Hence ,

since shows that (1) is actually in polar form.
From in (10) we see that

(11) for all z.

So here we have an entire function that never vanishes, in contrast to (nonconstant)
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as
is proved in algebra.

ex � 0

ƒ ez ƒ � ex � 0
ezƒ ez ƒ � ex

(n � 0, 1, 2, Á )arg ez � y � 2npƒ ez ƒ � ex.

ƒ eiy ƒ � ƒ cos y � i sin y ƒ � 2cos2 y � sin2 y � 1.

epi>2 � i,   epi � �1,   e�pi>2 � �i,   e�pi � �1.

e2pi � 1

z � reiu.

z � r (cos u � i sin u)

eiy � cos y � i sin y.

z � iy

ez � exeiy.

z1 � x, z2 � iy

ez1ez2 � ex1�x2[cos ( y1 � y2) � i sin ( y1 � y2)] � ez1�z2

ex1ex2 �  ex1�x2

ez1ez2 � ex1(cos y1 � i sin y1) ex2(cos y2 � i sin y2).

z2 � x2 � iy2z1 � x1 � iy1

SEC. 13.5 Exponential Function 631



Periodicity of ex with period 2�i,

(12) for all z

is a basic property that follows from (1) and the periodicity of cos y and sin y. Hence all
the values that can assume are already assumed in the horizontal strip of width 

(13) (Fig. 336).

This infinite strip is called a fundamental region of 

E X A M P L E  1 Function Values. Solution of Equations

Computation of values from (1) provides no problem. For instance, 

To illustrate (3), take the product of

and

and verify that it equals .
To solve the equation , note first that is the real part of all

solutions. Now, since ,

Ans. These are infinitely many solutions (due to the periodicity
of ). They lie on the vertical line at a distance from their neighbors.

To summarize: many properties of parallel those of ; an exception is the
periodicity of with , which suggested the concept of a fundamental region. Keep
in mind that is an entire function. (Do you still remember what that means?)ez

2piez
exez � exp z

�2px � 1.609ez
z � 1.609 � 0.927i � 2npi (n � 0, 1, 2, Á ).

ex cos y � 3,  ex sin y � 4,  cos y � 0.6,  sin y � 0.8,  y � 0.927.

ex � 5
ƒ ez ƒ � ex � 5, x � ln 5 � 1.609ez � 3 � 4i

e2e4(cos2 1 � sin2 1) � e6 � e(2�i)�(4�i)

e4�i � e4(cos 1 � i sin 1)e2�i � e2(cos 1 � i sin 1)

ƒ e1.4�1.6i ƒ � e1.4 � 4.055,  Arg e1.4–0.6i � �0.6.

e1.4�0.6i � e1.4(cos 0.6 � i sin 0.6) � 4.055(0.8253 � 0.5646i) � 3.347 � 2.289i

ez.

�p � y � p

2pw � ez

ez�2pi � ez
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y

x

π

–π

Fig. 336. Fundamental region of the 
exponential function ez in the z-plane

1. ez is entire. Prove this.

2–7 Function Values. Find in the form 
and if z equals

2. 3.

4. 5.

6. 7. 22 � 1
2pi11pi>2

2 � 3pi0.6 � 1.8i

2pi(1 � i)3 � 4i

ƒ ez ƒ
u � ivez

8–13 Polar Form. Write in exponential form (6):

8. 9.

10. 11.

12. 13.

14–17 Real and Imaginary Parts. Find Re and Im of

14. 15. exp (z2)e�pz

1 � i1>(1 � z)

�6.31i, 1�i

4 � 3i1n  z
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16. 17.

18. TEAM PROJECT. Further Properties of the Ex-
ponential Function. (a) Analyticity. Show that is
entire. What about ? ? ? (Use
the Cauchy–Riemann equations.)

(b) Special values. Find all z such that (i) is real,
(ii) (iii) .

(c) Harmonic function. Show that 
is harmonic and find a conjugate.(x2>2 � y2>2)

u � exy cos

ez � ezƒ e�z ƒ � 1,
ez

ex(cos ky � i sin ky)eze1>z
ez

exp (z3)e1>z
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(d) Uniqueness. It is interesting that is
uniquely determined by the two properties 

and , where f is assumed to be entire.
Prove this using the Cauchy–Riemann equations.

19–22 Equations. Find all solutions and graph some
of them in the complex plane.

19. 20.

21. 22. ez � �2ez � 0

ez � 4 � 3iez � 1

f r(z) � f (z)ex
f (x � i0) �
f (z) � ez

13.6 Trigonometric and Hyperbolic Functions.
Euler’s Formula

Just as we extended the real to the complex in Sec. 13.5, we now want to extend
the familiar real trigonometric functions to complex trigonometric functions. We can do
this by the use of the Euler formulas (Sec. 13.5)

By addition and subtraction we obtain for the real cosine and sine

This suggests the following definitions for complex values 

(1)

It is quite remarkable that here in complex, functions come together that are unrelated in
real. This is not an isolated incident but is typical of the general situation and shows the
advantage of working in complex.

Furthermore, as in calculus we define

(2)

and

(3)

Since is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they
are analytic except at the points where cos z is zero; and cot z and csc z are analytic except

ez

sec z �
1

cos z  ,   csc z �
1

sin z  .

tan z �
sin z
cos z  ,   cot z �

cos z
sin z

cos z � 1
2 (e

iz � e�iz),   sin z �
1
2i

 (eiz � e�iz).

z � x � iy:

cos x � 1
2 

(eix � e�ix),  sin x �
1
2i

 (eix � e�ix).

eix � cos x � i sin x,   e�ix � cos x � i sin x.

ezex



where sin z is zero. Formulas for the derivatives follow readily from and (1)–(3);
as in calculus,

(4)

etc. Equation (1) also shows that Euler’s formula is valid in complex:

(5)

The real and imaginary parts of cos z and sin z are needed in computing values, and they
also help in displaying properties of our functions. We illustrate this with a typical example.

E X A M P L E  1 Real and Imaginary Parts. Absolute Value. Periodicity

Show that

(6)
(a)

(b)

and

(7)
(a)

(b)

and give some applications of these formulas.

Solution. From (1),

This yields (6a) since, as is known from calculus,

(8)

(6b) is obtained similarly. From (6a) and we obtain

Since this gives (7a), and (7b) is obtained similarly.
For instance, 
From (6) we see that and are periodic with period just as in real. Periodicity of and 

with period now follows.
Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas

and the complex cosine and sine functions are no longer bounded but approach infinity 
in absolute value as since then in (7).

E X A M P L E  2 Solutions of Equations. Zeros of cos z and sin z

Solve (a) (which has no real solution!), (b) (c) 

Solution. (a) from (1) by multiplication by This is a quadratic equation in 
with solutions (rounded off to 3 decimals)

Thus Ans.
Can you obtain this from (6a)?

z � �2np � 2.292i (n � 0, 1, 2, Á ).e�y � 9.899 or 0.101, eix � 1, y � �2.292, x � 2np.

eiz � e�y�ix � 5 � 125 � 1 � 9.899 and 0.101.

eiz,eiz.e2iz � 10eiz � 1 � 0

sin z � 0.cos z � 0,cos z � 5

�sinh y: �y: �,
ƒ sin x ƒ � 1,ƒ cos x ƒ � 1

p
cot ztan z2�,cos zsin z

cos (2 � 3i) � cos 2 cosh 3 � i sin 2 sinh 3 � �4.190 � 9.109i.
sin2 x � cos2 x � 1,

ƒ cos z ƒ 2 � (cos2 x) (1 � sinh2 y) � sin2 x sinh2 y.

cosh2 y � 1 � sinh2 y

cosh y � 1
2(ey � e�y),  sinh y � 1

2(ey � e�y);

 � 1
2(ey � e�y) cos x � 1

2i(ey � e�y) sin x.

 � 1
2e�y(cos x � i sin x) � 1

2ey(cos x � i sin x)

 cos z � 1
2(ei(x�iy) � e�i(x�iy))

ƒ sin z ƒ 2 � sin2  x � sinh2 y

ƒ cos z ƒ 2 � cos2  x � sinh2 y

sin z � sin x cosh y � i cos x sinh y

cos z � cos x cosh y � i sin x sinh y

for all z.eiz � cos z � i sin z

(cos z)r � �sin z,   (sin z)r � cos z,   (tan z)r � sec2 z,

(ez)r � ez
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(b) 
(c) 

Hence the only zeros of and are those of the real cosine and sine functions.

General formulas for the real trigonometric functions continue to hold for complex
values. This follows immediately from the definitions. We mention in particular the
addition rules

(9)

and the formula

(10)

Some further useful formulas are included in the problem set.

Hyperbolic Functions
The complex hyperbolic cosine and sine are defined by the formulas

(11)

This is suggested by the familiar definitions for a real variable [see (8)]. These functions
are entire, with derivatives

(12)

as in calculus. The other hyperbolic functions are defined by

(13)

Complex Trigonometric and Hyperbolic Functions Are Related. If in (11), we replace z
by iz and then use (1), we obtain

(14)

Similarly, if in (1) we replace z by iz and then use (11), we obtain conversely

(15)

Here we have another case of unrelated real functions that have related complex analogs,
pointing again to the advantage of working in complex in order to get both a more unified
formalism and a deeper understanding of special functions. This is one of the main reasons
for the importance of complex analysis to the engineer and physicist.

cos iz � cosh z,   sin iz � i sinh z.

cosh iz � cos z,  sinh iz � i sin z.

sech z �
1

cosh z
 ,  csch z �

1
sinh z

 .

tanh z �
sinh z

cosh z
 ,  coth z �

cosh z

sinh z
 ,

(cosh z)r � sinh z,   (sinh z)r � cosh z,

cosh z � 1
2(ez � e�z),   sinh z � 1

2(ez � e�z).

cos2 z � sin2 z � 1.

 sin (z1 � z2) � sin z1 cos z2 � sin z2 cos z1

 cos (z1 � z2) � cos z1 cos z2  sin z1 sin z2

�sin zcos z
sin x � 0, sinh y � 0 by (7b), Ans. z � �np (n � 0, 1, 2, Á ).
cos x � 0, sinh y � 0 by (7a), y � 0. Ans. z � �1

2(2n � 1)p (n � 0, 1, 2, Á ).
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1–4 FORMULAS FOR HYPERBOLIC FUNCTIONS
Show that

1.

2.

3.

4. Entire Functions. Prove that , and
are entire.

5. Harmonic Functions. Verify by differentiation that
and are harmonic.

6–12 Function Values. Find, in the form 

6. 7.

8.

9.

10. sinh (3 � 4i), cosh (3 � 4i)

cosh (�1 � 2i), cos (�2 � i)

cos pi, cosh pi

cos i, sin isin 2pi

u � iv,

Re sin  zIm cos  z

sinh  z
cos  z, sin  z, cosh z

cosh2 z � sinh2 z � 1, cosh2 z � sinh2 z � cosh  2z

sinh (z1 � z2) � sinh z1 cosh z2 � cosh z1 sinh z2.

cosh (z1 � z2) � cosh z1 cosh z2 � sinh z1 sinh z2

sinh z � sinh x cos y � i cosh x sin y.

cosh z � cosh x cos y � i sinh x sin y

11.

12.

13–15 Equations and Inequalities. Using the defini-
tions, prove:

13. is even, and is odd,
.

14.
Conclude that the complex cosine and sine are not
bounded in the whole complex plane.

15.

16–19 Equations. Find all solutions.

16. 17.

18. 19.

20. . Show that

Im tan z �
sinh y cosh y

cos2 x � sinh2 y
 .

Re tan z �
sin x cos x

cos2 x � sinh2 y
 ,

Re tan z and Im tan z

sinh z � 0cosh z � �1

cosh z � 0sin z � 100

sin z1 cos z2 � 1
2[sin (z1 � z2) � sin (z1 � z2)]

ƒ sinh y ƒ � ƒ cos z ƒ � cosh y, ƒ sinh y ƒ � ƒ sin z ƒ � cosh y.

sin (�z) � �sin z
sin zcos (�z) � cos z,cos z

cos 12p i, cos [1
2p(1 � i)]

sin pi, cos (1
2p � pi)
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13.7 Logarithm. General Power. Principal Value
We finally introduce the complex logarithm, which is more complicated than the real
logarithm (which it includes as a special case) and historically puzzled mathematicians
for some time (so if you first get puzzled—which need not happen!—be patient and work
through this section with extra care).

The natural logarithm of is denoted by (sometimes also by log z) and
is defined as the inverse of the exponential function; that is, is defined for 
by the relation

(Note that is impossible, since for all w; see Sec. 13.5.) If we set 
and , this becomes

Now, from Sec. 13.5, we know that has the absolute value and the argument v.
These must be equal to the absolute value and argument on the right:

eu � r,  v � u.

eueu�iv

ew � eu�iv � reiu.

z � reiu
w � u � ivew � 0z � 0

ew � z.

z � 0w � ln z
ln zz � x � iy
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gives , where is the familiar real natural logarithm of the positive
number . Hence is given by

(1)

Now comes an important point (without analog in real calculus). Since the argument of
z is determined only up to integer multiples of the complex natural logarithm

is infinitely many-valued.
The value of ln z corresponding to the principal value Arg z (see Sec. 13.2) is denoted

by Ln z (Ln with capital L) and is called the principal value of ln z. Thus

(2)

The uniqueness of Arg z for given z ( ) implies that Ln z is single-valued, that is, a
function in the usual sense. Since the other values of arg z differ by integer multiples of 
the other values of ln z are given by

(3)

They all have the same real part, and their imaginary parts differ by integer multiples 
of 

If z is positive real, then , and Ln z becomes identical with the real natural
logarithm known from calculus. If z is negative real (so that the natural logarithm of
calculus is not defined!), then Arg and

(z negative real).

From (1) and for positive real r we obtain

(4a)

as expected, but since arg is multivalued, so is

(4b)

E X A M P L E  1 Natural Logarithm. Principal Value

� (Fig. 337) � 1.609438 � 0.927295i � 2npi  

 Ln (3 � 4i) � 1.609438 � 0.927295i ln (3 � 4i) � ln 5 � i arg (3 � 4i)

 Ln (�4i) � 1.386294 � pi>2 ln (�4i) � 1.386294 � pi>2 � 2npi

 Ln 4i � 1.386294 � pi>2 ln 4i � 1.386294 � pi>2 � 2npi

 Ln i � pi>2 ln i � pi>2, �3p>2, 5pi>2, Á

 Ln (�4) � 1.386294 � pi ln (�4) � 1.386294 � (2n � 1)pi

 Ln (�1) � pi ln (�1) � �pi, �3pi, �5pi, Á

 Ln 4 � 1.386294 ln 4 � 1.386294 � 2npi

 Ln 1 � 0 ln 1 � 0, �2pi, �4pi, Á

n � 0, 1, Á .ln (ez) � z � 2npi,

(ez) � y � 2np

eln z � z

eln r � r

Ln z � ln ƒ z ƒ � pi

z � p

Arg z � 0
2p.

(n � 1, 2, Á ).In z � Ln z � 2npi

2p,
� 0

(z � 0).Ln z � ln ƒ z ƒ � i Arg z

ln z (z � 0)
2p,

(r � ƒ z ƒ 
 0, u � arg z).ln z � ln r � iu

w � u � iv � ln zr � ƒ z ƒ
ln ru � ln reu � r
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Fig. 337. Some values of ln (3 � 4i ) in Example 1

The familiar relations for the natural logarithm continue to hold for complex values, that is,

(5)

but these relations are to be understood in the sense that each value of one side is also
contained among the values of the other side; see the next example.

E X A M P L E  2 Illustration of the Functional Relation (5) in Complex

Let

If we take the principal values

then (5a) holds provided we write ; however, it is not true for the principal value, 

T H E O R E M  1 Analyticity of the Logarithm

For every formula (3) defines a function, which is analytic,
except at 0 and on the negative real axis, and has the derivative

(6) (z not 0 or negative real).

P R O O F We show that the Cauchy–Riemann equations are satisfied. From (1)–(3) we have

where the constant c is a multiple of . By differentiation,

uy �
y

x2 � y2
� �vx � � 

1

1 � (y>x)2
 a� 

y

x2
b .

ux �
x

x2 � y2 � vy �
1

1 � (y>x)2
# 1

x

2p

ln z � ln r � i(u � c) �
1
2

 ln (x2 � y2) � i aarctan 
y
x

� cb

(ln z)r �
1
z

n � 0, �1, �2, Á

�Ln (z1z2) � Ln 1 � 0.
ln (z1z2) � ln 1 � 2pi

Ln z1 � Ln z2 � pi,

z1 � z2 � epi � �1.

(a) ln (z1z2) � ln z1 � ln z2,  (b) ln (z1>z2) � ln z1 � ln z2

v

u–0.9
0

–0.9 – 2

–0.9 + 2

–0.9 + 4

–0.9 + 6π

π

π

π

21



Hence the Cauchy–Riemann equations hold. [Confirm this by using these equations in polar
form, which we did not use since we proved them only in the problems (to Sec. 13.4).]
Formula (4) in Sec. 13.4 now gives (6),

Each of the infinitely many functions in (3) is called a branch of the logarithm. The
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 338.
The branch for is called the principal branch of ln z.

Fig. 338. Branch cut for ln z

General Powers
General powers of a complex number are defined by the formula

(7) (c complex, ).

Since ln z is infinitely many-valued, will, in general, be multivalued. The particular value

is called the principal value of 
If then is single-valued and identical with the usual nth power of z.

If , the situation is similar.
If , where , then

the exponent is determined up to multiples of and we obtain the n distinct values
of the nth root, in agreement with the result in Sec. 13.2. If , the quotient of two
positive integers, the situation is similar, and has only finitely many distinct values.
However, if c is real irrational or genuinely complex, then is infinitely many-valued.

E X A M P L E  3 General Power

All these values are real, and the principal value ( ) is 
Similarly, by direct calculation and multiplying out in the exponent,

� � 2ep>4�2np 3sin (1
2 ln 2) � i cos (1

2 ln 2)4.
 (1 � i)2�i � exp 3(2 � i) ln (1 � i)4 � exp 3(2 � i) {ln 12 � 1

4pi � 2npi}4

e�p>2.n � 0

i i � ei ln i � exp (i ln i) � exp c i ap
2

 i � 2npib d � e�(p>2)2np.

zc
zc

c � p>q
2pi>n

(z � 0),zc �  n1z � e(1>n) ln z

n � 2, 3, Ác � 1>n
c � �1, �2, Á

znc � n � 1, 2, Á ,
zc.

zc � ec Ln z

zc

z � 0zc � ec ln z

z � x � iy

x

y

n � 0

�(ln z)r � ux � ivx �
x

x2 � y2 � i 
1

1 � (y>x)2  a� 

y

x2b �
x � iy

x2 � y2 �
1
z

 .
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It is a convention that for real positive the expression means where ln x
is the elementary real natural logarithm (that is, the principal value Ln z ( ) in
the sense of our definition). Also, if , the base of the natural logarithm, is
conventionally regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

(8)

We have now introduced the complex functions needed in practical work, some of them
( ) entire (Sec. 13.5), some of them (
analytic except at certain points, and one of them (ln z) splitting up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

tan z, cot z, tanh z, coth z)ez, cos z, sin z, cosh z, sinh z

az � ez ln a.

zc � ecz � e
z � x 
 0

ec ln xzcz � x
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1–4 VERIFICATIONS IN THE TEXT
1. Verify the computations in Example 1.

2. Verify (5) for 

3. Prove analyticity of Ln z by means of the Cauchy–
Riemann equations in polar form (Sec. 13.4).

4. Prove (4a) and (4b).

COMPLEX NATURAL LOGARITHM ln z
5–11 Principal Value Ln z. Find Ln z when z equals
5. 6.

7. 8.

9. 10.

11.

12–16 All Values of ln z. Find all values and graph
some of them in the complex plane.

12. ln e 13. ln 1

14. 15.

16.

17. Show that the set of values of differs from the
set of values of 2 ln i.

18–21 Equations. Solve for z.

18. 19.

20. 21.

22–28 General Powers. Find the principal value.
Show details.

22. 23.

24. 25. (�3)3�i(1 � i)1�i

(1 � i)1�i(2i)2i

ln z � 0.6 � 0.4iln z � e � pi

ln z � 4 � 3iln z � �pi>2

ln (i2)

ln (4 � 3i)

ln (ei)ln (�7)

ei

�15 � 0.1i0.6 � 0.8i

1 � i4 � 4i

4 � 4i�11

z1 � �i and z2 � �1.

26. 27.

28.

29. How can you find the answer to Prob. 24 from the
answer to Prob. 23?

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine

is the relation such that The
inverse is the relation such that

. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using and
similar representations of cos w, etc., show that

(a)

(b)

(c)

(d)

(e)

(f)

(g) Show that is infinitely many-valued,
and if is one of these values, the others are of the 
form and 
(The principal value of is defined
to be the value for which if 
and )�p>2 � u � p>2 if v � 0.

v 	 0�p>2 � u � p>2
w � u � iv � arcsin z
p � w1 � 2np, n � 0, 1, Á .w1 � 2np

w1

w � arcsin z

arctanh z �
1
2

 ln 
1 � z

1 � z

arctan z �
i
2

 ln 
i � z

i � z

arcsinh z � ln (z � 2z2 � 1)

arccosh z � ln (z � 2z2 � 1)

arcsin z � �i ln (iz � 21 � z2)

arccos z � �i ln (z � 2z2 � 1)

sin w � (eiw � e�iw)>(2i)

cos w � z
cosine w � arccos z

sin w � z.w � arcsin z

(3 � 4i)1>3
(�1)2�i(i)i>2

P R O B L E M  S E T  1 3 . 7
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1. Divide by Check the result by
multiplication.

2. What happens to a quotient if you take the complex
conjugates of the two numbers? If you take the absolute
values of the numbers?

3. Write the two numbers in Prob. 1 in polar form. Find
the principal values of their arguments.

4. State the definition of the derivative from memory.
Explain the big difference from that in calculus.

5. What is an analytic function of a complex variable?

6. Can a function be differentiable at a point without being
analytic there? If yes, give an example.

7. State the Cauchy–Riemann equations. Why are they of
basic importance?

8. Discuss how are related.

9. ln z is more complicated than ln x. Explain. Give
examples.

10. How are general powers defined? Give an example.
Convert it to the form 

11–16 Complex Numbers. Find, in the form ,
showing details,

11. 12.

13. 14. 2i1>(4 � 3i)

(1 � i)10(2 � 3i)2

x � iy

x � iy.

ez, cos z, sin z, cosh z, sinh z

�3 � 7i.15 � 23i 15. 16.

17–20 Polar Form. Represent in polar form, with the
principal argument.

17. 18.

19. 20.

21–24 Roots. Find and graph all values of:

21. 22.

23. 24.

25–30 Analytic Functions. Find 
with u or v as given. Check by the Cauchy–Riemann equations
for analyticity.

25 26.

27. 28.

29.

30.

31–35 Special Function Values. Find the value of:

31. 32.

33.

34.

35. cosh (p � pi)

sinh (1 � pi), sin (1 � pi)

tan i

Ln (0.6 � 0.8i)cos (3 � i)

v � cos 2x sinh 2y

u � exp(�(x2 � y2)>2) cos xy

u � cos 3x cosh 3yv � �e�2x sin 2y

v � y>(x2 � y2)u � xy

f (z) � u(x, y) � iv(x, y)

23 124 �1

2�32i181

0.6 � 0.8i�15i

12 � i, 12 � i�4 � 4i

epi>2, e�pi>2(1 � i)>(1 � i)

C H A P T E R  1 3  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

For arithmetic operations with complex numbers

(1) ,

, and for their representation in the complex
plane, see Secs. 13.1 and 13.2.

A complex function is analytic in a domain D if it has
a derivative (Sec. 13.3)

(2)

everywhere in D. Also, f(z) is analytic at a point if it has a derivative in a
neighborhood of (not merely at itself).z0z0

z � z0

f r(z) � lim
¢z:0

 
f (z � ¢z) � f (z)

¢z

f (z) � u(x, y) � iv(x, y)

r � ƒ z ƒ � 2x2 � y2, u � arctan (y>x)

z � x � iy � reiu � r (cos u � i sin u)

SUMMARY OF CHAPTER 13
Complex Numbers and Functions. Complex Differentiation
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If is analytic in D, then and v(x, y) satisfy the (very important!)
Cauchy–Riemann equations (Sec. 13.4)

(3)

everywhere in D. Then u and v also satisfy Laplace’s equation

(4)

everywhere in D. If u(x, y) and v(x, y) are continuous and have continuous partial
derivatives in D that satisfy (3) in D, then is analytic in
D. See Sec. 13.4. (More on Laplace’s equation and complex analysis follows in
Chap. 18.)

The complex exponential function (Sec. 13.5)

(5)

reduces to if . It is periodic with and has the derivative .
The trigonometric functions are (Sec. 13.6)

(6)

and, furthermore,

etc.

The hyperbolic functions are (Sec. 13.6)

(7)

etc. The functions (5)–(7) are entire, that is, analytic everywhere in the complex
plane.

The natural logarithm is (Sec. 13.7)

(8)

where and . Arg z is the principal value of arg z, that is,
. We see that ln z is infinitely many-valued. Taking gives

the principal value Ln z of ln z; thus 
General powers are defined by (Sec. 13.7)

(9) (c complex, ). z � 0zc � ec ln z

Ln z � ln ƒ z ƒ � i Arg z.
n � 0�p � Arg z � p

n � 0, 1, Áz � 0

ln z � ln ƒ z ƒ � i arg z � ln ƒ z ƒ � i Arg z � 2npi

cosh z � 1
2(ez � e�z) � cos iz,  sinh z � 1

2(ez � e�z) � �i sin iz

tan z � (sin z)>cos z,  cot z � 1>tan z,

sin z �
1
2i

 (eiz � e�iz) � sin x cosh y � i cos x sinh y

cos z � 1
2 

(eiz � e�iz) � cos x cosh y � i sin x sinh y

ez2piz � x (y � 0)ex

ez � exp z � ex (cos y � i sin y)

f (z) � u(x, y) � iv(x, y)

uxx � uyy � 0,  vxx � vyy � 0

0u
0x

�
0v
0y

 ,  0u
0y

� � 
0v
0x

u(x, y)f (z)
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C H A P T E R 1 4

Complex Integration

Chapter 13 laid the groundwork for the study of complex analysis, covered complex num-
bers in the complex plane, limits, and differentiation, and introduced the most important
concept of analyticity. A complex function is analytic in some domain if it is differentiable
in that domain. Complex analysis deals with such functions and their applications. The
Cauchy–Riemann equations, in Sec. 13.4, were the heart of Chapter 13 and allowed a means
of checking whether a function is indeed analytic. In that section, we also saw that analytic
functions satisfy Laplace’s equation, the most important PDE in physics.

We now consider the next part of complex calculus, that is, we shall discuss the first
approach to complex integration. It centers around the very important Cauchy integral
theorem (also called the Cauchy–Goursat theorem) in Sec. 14.2. This theorem is important
because it allows, through its implied Cauchy integral formula of Sec. 14.3, the evaluation
of integrals having an analytic integrand. Furthermore, the Cauchy integral formula shows
the surprising result that analytic functions have derivatives of all orders. Hence, in this
respect, complex analytic functions behave much more simply than real-valued functions
of real variables, which may have derivatives only up to a certain order.

Complex integration is attractive for several reasons. Some basic properties of analytic
functions are difficult to prove by other methods. This includes the existence of derivatives
of all orders just discussed. A main practical reason for the importance of integration in
the complex plane is that such integration can evaluate certain real integrals that appear
in applications and that are not accessible by real integral calculus.

Finally, complex integration is used in connection with special functions, such as
gamma functions (consult [GenRef1]), the error function, and various polynomials (see
[GenRef10]). These functions are applied to problems in physics.

The second approach to complex integration is integration by residues, which we shall
cover in Chapter 16.

Prerequisite: Chap. 13. 
Section that may be omitted in a shorter course: 14.1, 14.5.
References and Answers to Problems: App. 1 Part D, App. 2.

14.1 Line Integral in the Complex Plane
As in calculus, in complex analysis we distinguish between definite integrals and indefinite
integrals or antiderivatives. Here an indefinite integral is a function whose derivative
equals a given analytic function in a region. By inverting known differentiation formulas
we may find many types of indefinite integrals.

Complex definite integrals are called (complex) line integrals. They are written

�
C

 f (z) dz.



Here the integrand is integrated over a given curve C or a portion of it (an arc, but
we shall say “curve” in either case, for simplicity). This curve C in the complex plane is
called the path of integration. We may represent C by a parametric representation

(1)

The sense of increasing t is called the positive sense on C, and we say that C is oriented
by (1).

For instance, gives a portion (a segment) of the line 
The function represents the circle , and so
on. More examples follow below.

We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative

at each point. Geometrically this means that C has everywhere a continuously turning
tangent, as follows directly from the definition

(Fig. 339).

Here we use a dot since a prime denotes the derivative with respect to z.

Definition of the Complex Line Integral
This is similar to the method in calculus. Let C be a smooth curve in the complex plane
given by (1), and let be a continuous function given (at least) at each point of C. We
now subdivide (we “partition”) the interval in (1) by points

where . To this subdivision there corresponds a subdivision of C by
points

(Fig. 340),z0, z1, Á , zn�1, zn (� Z )

t0 � t1 � Á � tn

t0 (� a), t1, Á , tn�1, tn (� b)

a � t � b
f (z)

r

z
#
(t) � lim

¢t:0
 
z(t � ¢t) � z(t)

¢t

z
#
(t) �

dz

dt
� x
#
(t) � iy

#
(t)

ƒ z ƒ � 4z(t) � 4 cos t � 4i sin t (�p � t � p)
y � 3x.z(t) � t � 3it (0 � t � 2)

(a � t � b).z(t) � x(t) � iy(t)

f (z)
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z(t + Δt) – z(t)  

z(t + Δt)
z(t)

z(t)

0

Z

. . .

z
0

z
1

z
2

zm – 1
m zm

ζ

. ..|Δzm|

Fig. 339. Tangent vector z
.
(t) of a curve C in the

complex plane given by z(t). The arrowhead on the 
curve indicates the positive sense (sense of increasing t)

Fig. 340. Complex line integral



where . On each portion of subdivision of C we choose an arbitrary point, say,
a point between and (that is, where t satisfies ), a point 
between and etc. Then we form the sum

(2) where

We do this for each in a completely independent manner, but so that the
greatest approaches zero as This implies that the greatest

also approaches zero. Indeed, it cannot exceed the length of the arc of C from
to and the latter goes to zero since the arc length of the smooth curve C is a

continuous function of t. The limit of the sequence of complex numbers thus
obtained is called the line integral (or simply the integral) of over the path of
integration C with the orientation given by (1). This line integral is denoted by

(3) or by

if C is a closed path (one whose terminal point Z coincides with its initial point , as
for a circle or for a curve shaped like an 8).

General Assumption. All paths of integration for complex line integrals are assumed to
be piecewise smooth, that is, they consist of finitely many smooth curves joined end to end.

Basic Properties Directly Implied by the Definition
1. Linearity. Integration is a linear operation, that is, we can integrate sums term by

term and can take out constant factors from under the integral sign. This means that
if the integrals of and over a path C exist, so does the integral of 
over the same path and

(4)

2. Sense reversal in integrating over the same path, from to Z (left) and from Z to
(right), introduces a minus sign as shown,

(5)

3. Partitioning of path (see Fig. 341)

(6) �
C

 
f (z) dz � �

C1

f (z) dz � �
C2

f (z) dz.

�
Z

z0

f (z) dz � ��
z0

Z

f (z) dz.

z0

z0

�
C

[k1 f1(z) � k2 f2(z)] dz � k1�
C

 f1(z) dz � k2�
C

 f2(z) dz.

k1 f1 � k2 f2f2f1

z0

�
C

 f (z) dz�
C

 f (z) dz,

f (z)
S2, S3, Á

zmzm�1

ƒ ¢zm ƒ
n: �.ƒ ¢tm ƒ � ƒ tm � tm�1 ƒ

n � 2, 3, Á

¢zm � zm � zm�1.Sn � a

n

m�1

 f (zm) ¢zm

z2,z1

z2t0 � t � t1z1 � z(t)z1z0z1

z j � z(tj)
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C
1

z
0

C
2 Z

Fig. 341. Partitioning of path [formula (6)]



Existence of the Complex Line Integral
Our assumptions that is continuous and C is piecewise smooth imply the existence
of the line integral (3). This can be seen as follows.

As in the preceding chapter let us write We also set

and

Then (2) may be written

(7)

where and we sum over m from 1 to n. Performing the
multiplication, we may now split up into four sums:

[ ] .

These sums are real. Since f is continuous, u and v are continuous. Hence, if we let n
approach infinity in the aforementioned way, then the greatest and will approach
zero and each sum on the right becomes a real line integral:

(8)

This shows that under our assumptions on f and C the line integral (3) exists and its value
is independent of the choice of subdivisions and intermediate points 

First Evaluation Method: 
Indefinite Integration and Substitution of Limits
This method is the analog of the evaluation of definite integrals in calculus by the well-
known formula

where 
It is simpler than the next method, but it is suitable for analytic functions only. To

formulate it, we need the following concept of general interest.
A domain D is called simply connected if every simple closed curve (closed curve

without self-intersections) encloses only points of D.
For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not

simply connected. (Explain!)

[Fr(x) � f (x)].

�
b

a

f (x) dx � F(b) � F(a)

�zm.

 � �
C

u dx � �
C

v dy � i c �
C

u dy � �
C

v dx d  .

 lim
n:�  

Sn � �
C

 f (z) dz

¢ym¢xm

au ¢ym � a  v ¢xmSn � a  u ¢xm � a  v ¢ym � i

Sn

u � u(zm, hm), v � v(zm, hm)

Sn � a (u � iv)(¢xm � i¢ym)

¢zm � ¢xm � i¢ym.zm � �m � ihm

f (z) � u(x, y) � iv(x, y).

f (z)
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T H E O R E M  1 Indefinite Integration of Analytic Functions

Let be analytic in a simply connected domain D. Then there exists an indefinite
integral of in the domain D, that is, an analytic function such that

in D, and for all paths in D joining two points and in D we have

(9)

(Note that we can write and instead of C, since we get the same value for all
those C from to .)

This theorem will be proved in the next section.
Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5.
Since analytic functions are our main concern, and since differentiation formulas will often

help in finding for a given the present method is of great practical interest.
If is entire (Sec. 13.5), we can take for D the complex plane (which is certainly

simply connected).

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3

since is periodic with period 

E X A M P L E  4 . Here D is the complex plane without 0 and the negative real

axis (where Ln z is not analytic). Obviously, D is a simply connected domain.

Second Evaluation Method: 
Use of a Representation of a Path
This method is not restricted to analytic functions but applies to any continuous complex
function.

T H E O R E M  2 Integration by the Use of the Path

Let C be a piecewise smooth path, represented by , where . Let
be a continuous function on C. Then

(10) az# � dz

dt
b .�

C

 f (z) dz � �
b

a

f [z(t)]z
#
(t) dt

f (z)
a � t � bz � z(t)

�

�
i

�i

 
dz

z
� Ln i � Ln (�i) �

ip

2
� a� 

ip

2
b � ip

�2pi.ez

�
8�3pi

8�pi
 e

z>2 dz � 2ez>2 ` 8�3pi

8�pi
� 2(e4–3pi>2 � e4�pi>2) � 0

��
pi

�pi

 cos z dz � sin z ` pi

�pi
� 2 sin pi � 2i sinh p � 23.097i

��
1�i

0

z2 dz �
1

3
 z3 ` 1�i

0

�
1

3
 (1 � i)3 � � 

2

3
�

2

3
 i

f (z)
f (z) � Fr(z),F(z)

z1z0

z1z0

[Fr(z) � f (z)].�
z1

z0

 f (z) dz � F(z1) � F(z0)

z1z0Fr(z) � f (z)
F(z)f (z)

f (z)
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P R O O F The left side of (10) is given by (8) in terms of real line integrals, and we show that
the right side of (10) also equals (8). We have , hence . We simply
write u for and v for . We also have and .
Consequently, in (10)

COMMENT. In (7) and (8) of the existence proof of the complex line integral we referred
to real line integrals. If one wants to avoid this, one can take (10) as a definition of the
complex line integral.

Steps in Applying Theorem 2

(A) Represent the path C in the form 

(B) Calculate the derivative 

(C) Substitute for every z in (hence for x and for y).

(D) Integrate over t from a to b.

E X A M P L E  5 A Basic Result: Integral of 1/z Around the Unit Circle

We show that by integrating counterclockwise around the unit circle (the circle of radius 1 and center 0;
see Sec. 13.3) we obtain

(11) (C the unit circle, counterclockwise).

This is a very important result that we shall need quite often.

Solution. (A) We may represent the unit circle C in Fig. 330 of Sec. 13.3 by

so that counterclockwise integration corresponds to an increase of t from 0 to 

(B) Differentiation gives (chain rule!).

(C) By substitution, 

(D) From (10) we thus obtain the result

Check this result by using 
Simple connectedness is essential in Theorem 1. Equation (9) in Theorem 1 gives 0 for any closed path

because then so that . Now is not analytic at . But any simply connected
domain containing the unit circle must contain so that Theorem 1 does not apply—it is not enough that

is analytic in an annulus, say, , because an annulus is not simply connected! �1
2 � ƒ z ƒ � 3

21>z
z � 0,

z � 01>zF(z1) � F(z0) � 0z1 � z0,

z(t) � cos t � i sin t.

�
C

 
dz

z
� �

2p

0

 e�itieit dt � i�
2p

0

 dt � 2pi.

f (z(t)) � 1>z(t) � e�it.

z
#
(t) � ieit

2p.

(0 � t � 2p),z(t) � cos t � i sin t � eit

�
C
 
dz

z
� 2pi

1>z

f [z(t)]z
#
(t)

y(t)x(t)f (z)z(t)

z
#
(t) � dz>dt.

z(t) (a � t � b).

� � �
C

(u dx � v dy) � i�
C

(u dy � v dx).

 � �
C

[u dx � v dy � i (u dy � v dx)]

 �
b

a

 f [z(t)]z
#
 (t) dt � �

b

a

(u � iv)(x
#
� iy
#
) dt

dy � y
#
 dtdx � x

#
 dtv[x(t), y(t)]u[x(t), y(t)]

z
#

� x
#
� iy
#

z � x � iy
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E X A M P L E  6 Integral of 1/z m with Integer Power m

Let where m is the integer and a constant. Integrate counterclockwise around the circle C
of radius with center at (Fig. 342).z0r

z0f (z) � (z � z0)m
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y

x

ρ

z
0

C

Fig. 342. Path in Example 6

Solution. We may represent C in the form

Then we have

and obtain

By the Euler formula (5) in Sec. 13.6 the right side equals

If , we have . We thus obtain . For integer each of the two
integrals is zero because we integrate over an interval of length , equal to a period of sine and cosine. Hence
the result is

(12)

Dependence on path. Now comes a very important fact. If we integrate a given function
from a point to a point along different paths, the integrals will in general have

different values. In other words, a complex line integral depends not only on the endpoints
of the path but in general also on the path itself. The next example gives a first impression
of this, and a systematic discussion follows in the next section.

E X A M P L E  7 Integral of a Nonanalytic Function. Dependence on Path

Integrate from 0 to (a) along in Fig. 343, (b) along C consisting of and 

Solution. (a) can be represented by . Hence and 
on . We now calculate

�
C*

Re z dz � �
1

0

t(1 � 2i) dt �
1

2
 (1 � 2i) �

1

2
� i.

C*x(t) � t
f [z(t)] �z

#
(t) � 1 � 2iz(t) � t � 2it (0 � t � 1)C*

C2.C1C*1 � 2if (z) � Re z � x

z1z0f (z)

��
C

 (z � z0)m dz � b 

2pi  (m � �1),

 0  (m � �1 and integer).

2p
m � �12pirm�1 � 1, cos 0 � 1, sin 0 � 0m � �1

irm�1 c �
2p

0

cos (m � 1)t dt � i�
2p

0

 sin (m � 1)t dt d  .

�
C

 (z � z0)m dz � �
2p

0

 rmeimt ireit dt � irm�1�
2p

0

 ei(m�1)t dt.

(z � z0)m � rmeimt,  dz � ireit dt

(0 � t � 2p).z(t) � z0 � r(cos t � i sin t) � z0 � reit



(b) We now have

Using (6) we calculate

Note that this result differs from the result in (a).

Bounds for Integrals. ML-Inequality
There will be a frequent need for estimating the absolute value of complex line integrals.
The basic formula is

(13) (ML-inequality);

L is the length of C and M a constant such that everywhere on C.

P R O O F Taking the absolute value in (2) and applying the generalized inequality in Sec. 13.2,
we obtain

Now is the length of the chord whose endpoints are and (see Fig. 340).
Hence the sum on the right represents the length of the broken line of chords whose
endpoints are . If n approaches infinity in such a way that the greatest

and thus approach zero, then approaches the length L of the curve C, by
the definition of the length of a curve. From this the inequality (13) follows.

We cannot see from (13) how close to the bound ML the actual absolute value of the
integral is, but this will be no handicap in applying (13). For the time being we explain
the practical use of (13) by a simple example.

�

L*ƒ ¢zm ƒƒ ¢tm ƒ
z0, z1, Á , zn (� Z )

L*
zmzm�1ƒ ¢zm ƒ

ƒSn ƒ � 2 an
m�1

 f (zm) ¢zm 2 � a

n

m�1

ƒ  f (zm) ƒ ƒ ¢zm ƒ � Ma

n

m�1

ƒ ¢zm ƒ .

(6*)

ƒ  f (z) ƒ � M

2 �
C

 
f (z) dz 2 � ML

�

�
C

Re z dz � �
C1

Re z dz � �
C2

Re z dz � �
1

0

t dt � �
2

0

1 # i dt �
1

2
� 2i.

C1: z(t) � t,  z
#
(t) � 1, f (z(t)) � x(t) � t (0 � t � 1)

C2: z(t) � 1 � it,  z
#
(t) � i, f (z(t)) � x(t) � 1 (0 � t � 2).
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C*
C

2

C
1

1

z = 1 + 2i2

x

y

Fig. 343. Paths in Example 7
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1–10 FIND THE PATH and sketch it.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11–20 FIND A PARAMETRIC REPRESENTATION
and sketch the path.

11. Segment from to 

12. From to along the axes

13. Upper half of from to 

14. Unit circle, clockwise

15. , the branch through 

16. Ellipse counterclockwise

17. clockwise

18. from to 

19. Parabola 

20.

21–30 INTEGRATION
Integrate by the first method or state why it does not apply
and use the second method. Show the details.

21. , C the shortest path from to 3 � 3i1 � i�
C

 Re z dz

4(x � 2)2 � 5( y � 1)2 � 20

y � 1 � 1
4 

x2 (�2 � x � 2)

(5, 15)(1, 1)y � 1>x
ƒ z � a � ib ƒ � r,

4x2 � 9y2 � 36,

(2, 0)x2 � 4y2 � 4

(0, �1)(4, �1)ƒ z � 2 � i ƒ � 2

(2, 1)(0, 0)

(1, 3)(�1, 1)

z(t) � 2 cos t � i sin t (0 � t � 2p)

z(t) � t � it 3 (�2 � t � 2)

z(t) � 5e�it (0 � t � p>2)

z(t) � 2 � 4epit>2 (0 � t � 2)

z(t) � 1 � i � e�pit (0 � t � 2)

z(t) � 3 � i � 110e�it (0 � t � 2p)

z(t) � t � (1 � t)2i (�1 � t � 1)

z(t) � t � 2it 2 (1 � t � 2)

z(t) � 3 � i � (1 � i)t (0 � t � 3)

z(t) � (1 � 1
2 

i)t (2 � t � 5)
22. C the parabola from

to 

23. , C the shortest path from to 

24. , C the semicircle from

to 

25. C from 1 along the axes to i

26. , C the unit circle, counterclockwise

27. any path from to 

28. C the circle 

clockwise

29. counterclockwise around the triangle with

vertices 0, 1, i

30. clockwise around the boundary of the square

with vertices 

31. CAS PROJECT. Integration. Write programs for the
two integration methods. Apply them to problems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use in a
given case?

0, i, 1 � i, 1

�
C

 Re z2 dz

�
C

 Im z2 dz

ƒ z � 2i ƒ � 4,�
C

 a 5
z � 2i

�
6

(z � 2i)2b dz,

pi>4p>4�
C

 sec2 z dz,

�
C

 (z � z�1) dz

�
C

 z exp (z2) dz,

pi�pi

ƒ z ƒ � p, x 	 0�
C

 cos 2z dz

2pipi�
C

 ez dz

3 � 3i1 � i

y � 1 � 1
2 

(x � 1)2�
C

Re z dz,

P R O B L E M  S E T  1 4 . 1

E X A M P L E  8 Estimation of an Integral

Find an upper bound for the absolute value of the integral

C the straight-line segment from 0 to , Fig. 344.

Solution. and on C gives by (13)

The absolute value of the integral is (see Example 1).

Summary on Integration. Line integrals of can always be evaluated by (10), using
a representation (1) of the path of integration. If is analytic, indefinite integration by
(9) as in calculus will be simpler (proof in the next section).

f (z)
f (z)

�ƒ� 
2
3 � 2

3  
i ƒ � 2

3 12 � 0.9428

2 �
C

z2 dz 2 � 212 � 2.8284.

ƒ  f (z) ƒ � ƒ z2 ƒ � 2L � 12

1 � i�
C

z2 dz,

1  

1  

C

Fig. 344. Path in
Example 8



32. Sense reversal. Verify (5) for where C is
the segment from to 

33. Path partitioning. Verify (6) for and 
and the upper and lower halves of the unit circle.

34. TEAM EXPERIMENT. Integration. (a) Comparison.
First write a short report comparing the essential points
of the two integration methods.

(b) Comparison. Evaluate by Theorem 1

and check the result by Theorem 2, where:

(i) and C is the semicircle from
to 2i in the right half-plane,�2i

ƒ z ƒ � 2f (z) � z4

�
C

 f (z) dz

C2

C1f (z) � 1>z
1 � i.�1 � i

f (z) � z2,
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(ii) and C is the shortest path from 0 to

(c) Continuous deformation of path. Experiment
with a family of paths with common endpoints, say,

, with real parameter a.
Integrate nonanalytic functions , etc.) and
explore how the result depends on a. Then take analytic
functions of your choice. (Show the details of your
work.) Compare and comment.
(d) Continuous deformation of path. Choose another
family, for example, semi-ellipses 

and experiment as in (c).

35. ML-inequality. Find an upper bound of the absolute
value of the integral in Prob. 21.

i sin t, �p>2 � t � p>2,
z(t) � a cos t �

(Re z, Re (z2)
z(t) � t � ia sin t, 0 � t � p

1 � 2i.
f (z) � e2z

14.2 Cauchy’s Integral Theorem
This section is the focal point of the chapter. We have just seen in Sec. 14.1 that a line
integral of a function generally depends not merely on the endpoints of the path, but
also on the choice of the path itself. This dependence often complicates situations. Hence
conditions under which this does not occur are of considerable importance. Namely, if

is analytic in a domain D and D is simply connected (see Sec. 14.1 and also below),
then the integral will not depend on the choice of a path between given points. This result
(Theorem 2) follows from Cauchy’s integral theorem, along with other basic consequences
that make Cauchy’s integral theorem the most important theorem in this chapter and
fundamental throughout complex analysis.

Let us continue our discussion of simple connectedness which we started in Sec. 14.1.

1. A simple closed path is a closed path (defined in Sec. 14.1) that does not intersect
or touch itself as shown in Fig. 345. For example, a circle is simple, but a curve
shaped like an 8 is not simple.

f (z)

f (z)

Simple Simple Not simple Not simple

Fig. 345. Closed paths

2. A simply connected domain D in the complex plane is a domain (Sec. 13.3) such
that every simple closed path in D encloses only points of D. Examples: The interior
of a circle (“open disk”), ellipse, or any simple closed curve. A domain that is not
simply connected is called multiply connected. Examples: An annulus (Sec. 13.3),
a disk without the center, for example, . See also Fig. 346.

More precisely, a bounded domain D (that is, a domain that lies entirely in some
circle about the origin) is called p-fold connected if its boundary consists of p closed

0 � ƒ z ƒ � 1



connected sets without common points. These sets can be curves, segments, or single
points (such as for , for which ). Thus, D has “holes,”
where “hole” may also mean a segment or even a single point. Hence an annulus
is doubly connected 

T H E O R E M  1 Cauchy’s Integral Theorem

If is analytic in a simply connected domain D, then for every simple closed path
C in D,

(1) See Fig. 347.�
C

 f (z) dz � 0.

f (z)

( p � 2).

p � 1p � 20 � ƒ z ƒ � 1z � 0
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Simply
connected

Simply
connected

Doubly
connected

Triply
connected

Fig. 346. Simply and multiply connected domains

CD

Fig. 347. Cauchy’s integral theorem

Before we prove the theorem, let us consider some examples in order to really understand
what is going on. A simple closed path is sometimes called a contour and an integral over
such a path a contour integral. Thus, (1) and our examples involve contour integrals.

E X A M P L E  1 Entire Functions

for any closed path, since these functions are entire (analytic for all z).

E X A M P L E  2 Points Outside the Contour Where f (x) is Not Analytic

where C is the unit circle, is not analytic at but all these points lie
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at

outside C. �z � �2i

z � �p>2, �3p>2, Á ,sec z � 1>cos z

�
C
 sec z dz � 0,  �

C
  

dz

z2 � 4
� 0

�

�
C
 ez dz � 0,  �

C
 cos z dz � 0,  �

C
 zn dz � 0  (n � 0, 1, Á )



E X A M P L E  3 Nonanalytic Function

where C: is the unit circle. This does not contradict Cauchy’s theorem because is not
analytic.

E X A M P L E  4 Analyticity Sufficient, Not Necessary

where C is the unit circle. This result does not follow from Cauchy’s theorem, because is not analytic
at . Hence the condition that f be analytic in D is sufficient rather than necessary for (1) to be true.

E X A M P L E  5 Simple Connectedness Essential

for counterclockwise integration around the unit circle (see Sec. 14.1). C lies in the annulus where
is analytic, but this domain is not simply connected, so that Cauchy’s theorem cannot be applied. Hence the

condition that the domain D be simply connected is essential.
In other words, by Cauchy’s theorem, if is analytic on a simple closed path C and everywhere inside C,

with no exception, not even a single point, then (1) holds. The point that causes trouble here is where 
is not analytic.

P R O O F Cauchy proved his integral theorem under the additional assumption that the derivative
is continuous (which is true, but would need an extra proof). His proof proceeds as

follows. From (8) in Sec. 14.1 we have

Since is analytic in D, its derivative exists in D. Since is assumed to be
continuous, (4) and (5) in Sec. 13.4 imply that u and v have continuous partial derivatives
in D. Hence Green’s theorem (Sec. 10.4) (with u and instead of and ) is applicable
and gives

where R is the region bounded by C. The second Cauchy–Riemann equation (Sec. 13.4)
shows that the integrand on the right is identically zero. Hence the integral on the left is
zero. In the same fashion it follows by the use of the first Cauchy–Riemann equation that
the last integral in the above formula is zero. This completes Cauchy’s proof.

Goursat’s proof without the condition that is continuous1 is much more complicated.
We leave it optional and include it in App. 4.

f r(z)

�

�
C

 (u dx � v dy) � �
R
�  a� 

0v
0x

�
0u
0y

 b dx dy

F2F1�v

f r(z)f r(z)f (z)

�
C

 f (z) dz � �
C

 (u dx � v dy) � i �
C

 (u dy � v dx).

f r(z)

�
1>zz � 0

f (z)

1>z
1
2 � ƒ z ƒ � 3

2

�
C
  

dz

z
� 2pi

�z � 0
f (z) � 1>z2

�
C
  

dz

z2
� 0

�
f (z) � zz(t) � eit

�
C
 z dz � �

2p

0

 e�itieit dt � 2pi
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1ÉDOUARD GOURSAT (1858–1936), French mathematician who made important contributions to complex
analysis and PDEs. Cauchy published the theorem in 1825. The removal of that condition by Goursat (see Transactions
Amer. Math Soc., vol. 1, 1900) is quite important because, for instance, derivatives of analytic functions are also
analytic. Because of this, Cauchy’s integral theorem is also called Cauchy–Goursat theorem.



Independence of Path
We know from the preceding section that the value of a line integral of a given function

from a point to a point will in general depend on the path C over which we
integrate, not merely on and . It is important to characterize situations in which this
difficulty of path dependence does not occur. This task suggests the following concept.
We call an integral of independent of path in a domain D if for every in D
its value depends (besides on , of course) only on the initial point and the terminal
point , but not on the choice of the path C in D [so that every path in D from to 
gives the same value of the integral of 

T H E O R E M  2 Independence of Path

If is analytic in a simply connected domain D, then the integral of is
independent of path in D.

P R O O F Let and be any points in D. Consider two paths and in D from to without
further common points, as in Fig. 348. Denote by the path with the orientation
reversed (Fig. 349). Integrate from over to and over back to . This is a
simple closed path, and Cauchy’s theorem applies under our assumptions of the present
theorem and gives zero:

thus

But the minus sign on the right disappears if we integrate in the reverse direction, from
to , which shows that the integrals of over and are equal,

(2) (Fig. 348).

This proves the theorem for paths that have only the endpoints in common. For paths that
have finitely many further common points, apply the present argument to each “loop”
(portions of and between consecutive common points; four loops in Fig. 350). For
paths with infinitely many common points we would need additional argumentation not
to be presented here.

Fig. 348. Formula (2) Fig. 349. Formula (2�) Fig. 350. Paths with more 
common points

C
1

C
2

z
2

z
1

C
1

C
2
*

z
2

z
1

C
1

C
2

z
2

z
1

C2C1

�
C1

 f (z) dz � �
C2

 f (z) dz

C2C1f (z)z2z1

�
C1

 f dz � ��
C2*

 f dz.�
C1

 f dz � �
C2*

 f dz � 0,(2r)

z1C2
*z2C1z1

C2C2
*

z2z1C2C1z2z1

f (z)f (z)

f (z)].
z2z1z2

z1f (z)
z1, z2f (z)

z2z1

z2z1f (z)
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Principle of Deformation of Path
This idea is related to path independence. We may imagine that the path in (2) was
obtained from by continuously moving (with ends fixed!) until it coincides with

. Figure 351 shows two of the infinitely many intermediate paths for which the integral
always retains its value (because of Theorem 2). Hence we may impose a continuous
deformation of the path of an integral, keeping the ends fixed. As long as our deforming
path always contains only points at which is analytic, the integral retains the same
value. This is called the principle of deformation of path.

f (z)

C2

C1C1

C2
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C
1

C
2

z
2

z
1

Fig. 351. Continuous deformation of path

E X A M P L E  6 A Basic Result: Integral of Integer Powers

From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that

(3)

for counterclockwise integration around any simple closed path containing in its interior.
Indeed, the circle in Example 6 of Sec. 14.1 can be continuously deformed in two steps into a path

as just indicated, namely, by first deforming, say, one semicircle and then the other one. (Make a sketch).

Existence of Indefinite Integral
We shall now justify our indefinite integration method in the preceding section [formula
(9) in Sec. 14.1]. The proof will need Cauchy’s integral theorem.

T H E O R E M  3 Existence of Indefinite Integral

If is analytic in a simply connected domain D, then there exists an indefinite
integral of in D—thus, —which is analytic in D, and for all
paths in D joining any two points and in D, the integral of from to 
can be evaluated by formula (9) in Sec. 14.1.

P R O O F The conditions of Cauchy’s integral theorem are satisfied. Hence the line integral of 
from any in D to any z in D is independent of path in D. We keep fixed. Then this
integral becomes a function of z, call if 

(4) F(z) � �
z

z0

 f (z*) dz*

F(z),
z0z0

f (z)

z1z0f (z)z1z0

F r(z) � f (z)f (z)F (z)
f (z)

�
ƒ z � z0 ƒ � r

z0

�  (z � z0)m dz � b 

2pi (m � �1)

0 (m � �1 and integer)



which is uniquely determined. We show that this is analytic in D and .
The idea of doing this is as follows. Using (4) we form the difference quotient

(5) 

We now subtract from (5) and show that the resulting expression approaches zero as
. The details are as follows.

We keep z fixed. Then we choose in D so that the whole segment with endpoints
z and is in D (Fig. 352). This can be done because D is a domain, hence it contains
a neighborhood of z. We use this segment as the path of integration in (5). Now we subtract

. This is a constant because z is kept fixed. Hence we can write

Thus

By this trick and from (5) we get a single integral:

Since is analytic, it is continuous (see Team Project (24d) in Sec. 13.3). An 
being given, we can thus find a such that when .
Hence, letting , we see that the ML-inequality (Sec. 14.1) yields

By the definition of limit and derivative, this proves that

Since z is any point in D, this implies that is analytic in D and is an indefinite integral
or antiderivative of in D, written

F(z) � �  f (z) dz.

f (z)
F(z)

F r(z) � lim
¢z:0

 
F(z � ¢z) � F(z)

¢z
� f (z).

`  F(z � ¢z) � F(z)

¢z
� f (z) ` �

1

ƒ ¢z ƒ
 ` �

z�¢z

z

 [ f (z*) � f (z)] dz* ` �
1

ƒ ¢z ƒ
 P ƒ ¢z ƒ � P.

ƒ ¢z ƒ � d
ƒ z* � z ƒ � dƒ  f (z*) � f (z) ƒ � Pd 
 0

P 
 0f (z)

F(z � ¢z) � F(z)

¢z
� f (z) �

1

¢z
 �

z�¢z

z

 [ f (z*) � f (z)] dz*.

f (z) �
1

¢z
 �

z�¢z

z

 f (z) dz*.�
z�¢z

z

f (z) dz* � f (z)�
z�¢z

z

dz* � f (z) ¢z.

f (z)

z � ¢z
z � ¢z

¢z: 0
f (z)

F(z � ¢z) � F(z)

¢z
�

1

¢z
 c �

z�¢z

z0

 f (z*) dz* � �
z

z0

 f (z*) dz* d �
1

¢z
 �

z�¢z

z

 f (z*) dz*.

Fr(z) � f (z)F(z)
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z
0

z
z + z

D

Fig. 352. Path of integration



Also, if , then in D; hence is constant in D
(see Team Project 30 in Problem Set 13.4). That is, two indefinite integrals of can
differ only by a constant. The latter drops out in (9) of Sec. 14.1, so that we can use any 
indefinite integral of . This proves Theorem 3.

Cauchy’s Integral Theorem 
for Multiply Connected Domains
Cauchy’s theorem applies to multiply connected domains. We first explain this for a
doubly connected domain D with outer boundary curve and inner (Fig. 353). If
a function is analytic in any domain that contains D and its boundary curves, we
claim that

(6) (Fig. 353)

both integrals being taken counterclockwise (or both clockwise, and regardless of whether
or not the full interior of belongs to ).D*C2

�
C1

 f (z) dz � �
C2

 f (z) dz

D*f (z)
C2C1

�f (z)

f (z)
F(z) � G(z)Fr(z) � Gr(z) � 0Gr(z) � f (z)
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C
1

C
2

Fig. 353. Paths in (5)

P R O O F By two cuts and (Fig. 354) we cut D into two simply connected domains and
in which and on whose boundaries is analytic. By Cauchy’s integral theorem the

integral over the entire boundary of (taken in the sense of the arrows in Fig. 354) is
zero, and so is the integral over the boundary of , and thus their sum. In this sum the
integrals over the cuts and cancel because we integrate over them in both
directions—this is the key—and we are left with the integrals over (counterclockwise)
and (clockwise; see Fig. 354); hence by reversing the integration over (to
counterclockwise) we have

and (6) follows.

For domains of higher connectivity the idea remains the same. Thus, for a triply connected
domain we use three cuts (Fig. 355). Adding integrals as before, the integrals
over the cuts cancel and the sum of the integrals over (counterclockwise) and 
(clockwise) is zero. Hence the integral over equals the sum of the integrals over 
and all three now taken counterclockwise. Similarly for quadruply connected domains,
and so on.

C3,
C2C1

C2, C3C1

C�1, C�2, C�3

�

�
C1

 f dz � �
C2

 f dz � 0

C2C2

C1

C�2C�1

D2

D1

f (z)D2

D1C�2C�1
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1–8 COMMENTS ON TEXT AND EXAMPLES

1. Cauchy’s Integral Theorem. Verify Theorem 1 for
the integral of over the boundary of the square with
vertices Hint. Use deformation.

2. For what contours C will it follow from Theorem 1 that

(a) (b)

3. Deformation principle. Can we conclude from
Example 4 that the integral is also zero over the contour
in Prob. 1?

4. If the integral of a function over the unit circle equals
2 and over the circle of radius 3 equals 6, can the
function be analytic everywhere in the annulus

5. Connectedness. What is the connectedness of the
domain in which is analytic?

6. Path independence. Verify Theorem 2 for the integral
of from 0 to (a) over the shortest path and
(b) over the x-axis to 1 and then straight up to 

7. Deformation. Can we conclude in Example 2 that
the integral of over (a) and
(b) is zero?

8. TEAM EXPERIMENT. Cauchy’s Integral Theorem.

(a) Main Aspects. Each of the problems in Examples
1–5 explains a basic fact in connection with Cauchy’s
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts.

(b) Partial fractions. Write in terms of partial
fractions and integrate it counterclockwise over the unit
circle, where

(i) (ii)

(c) Deformation of path. Review (c) and (d) of Team
Project 34, Sec. 14.1, in the light of the principle of defor-
mation of path. Then consider another family of paths

f (z) �
z � 1

z2 � 2z
 .f (z) �

2z � 3i

z2 �
1
4 

f (z)

ƒ z � 2 ƒ � 3
ƒ z � 2 ƒ � 21>(z2 � 4)

1 � i.
1 � iez

(cos z2)>(z4 � 1)

1 � ƒ z ƒ � 3?

�
C

 
exp (1>z2)

z2 � 16
 dz � 0 ?�

C

 
dz

z
� 0,

�1 � i.
z2

with common endpoints, say, 
a a real constant, and experiment with the

integration of analytic and nonanalytic functions of
your choice over these paths (e.g., z, Im z, , Re ,
Im , etc.).

9–19 CAUCHY’S THEOREM APPLICABLE? 
Integrate counterclockwise around the unit circle.
Indicate whether Cauchy’s integral theorem applies. Show
the details.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19.

20–30 FURTHER CONTOUR INTEGRALS 
Evaluate the integral. Does Cauchy’s theorem apply? Show
details.

20. , C the boundary of the parallelogram

with vertices 

21. C the circle counterclockwise.

22.

23.

Use partial fractions.

y

x2

C�
C

  
2z � 1

z2 � z
 dz, C:

y

x

C

–1 1

�
C

  Re z dz, C:

ƒ z ƒ � p�
C

  
dz

z � 3i
 ,

�i, �(1 � i).

�
C

 Ln (1 � z) dz

f (z) � z3 cot z

f (z) � 1>(4z � 3)f (z) � 1> ƒ z ƒ 2
f (z) � 1>(pz � 1)f (z) � Im z

f (z) � 1>zf (z) � 1>(z4 � 1.1)

f (z) � z 
3f (z) � 1>(2z � 1)

f (z) � tan 14 
zf (z) � exp (�z2)

f (z)

z2
z2z2

0 � t � 1,
(t � t 2),z(t) � t � ia

P R O B L E M  S E T 1 4 . 2

C
1

C
1

D
1

D
2

C
2C

2
~ ~

Fig. 354. Doubly connected domain

C
1

C
1

C
3C

2

C
2

C
3

~

~ ~

Fig. 355. Triply connected domain



24.

Use partial fractions.

25. consists of counterclockwise and

clockwise.

26. , C the circle clockwise.ƒ z � 1
2 
pi ƒ � 1�

C

  coth 12 
z dz

ƒ z ƒ � 1

ƒ z ƒ � 2�
C

  
ez

z  dz, C

y

x–1 1

C�
C

  
dz

z2 � 1
 , C:
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27. C consists of counterclockwise

and clockwise.

28. , C the boundary of the square with

vertices clockwise.

29. clockwise.

30. clockwise. Use

partial fractions.

�
C

  
2z3 � z2 � 4

z4 � 4z2
 dz, C: ƒ z � 2 ƒ � 4

�
C

  
sin z

z � 2iz
 dz, C: ƒ z � 4 � 2i ƒ � 5.5

�1, �i

�
C

  
tan 12 

z

z4 � 16
 dz

ƒ z ƒ � 3

ƒ z ƒ � 1�
C

  
cos z

z  dz,

14.3 Cauchy’s Integral Formula
Cauchy’s integral theorem leads to Cauchy’s integral formula. This formula is useful for
evaluating integrals as shown in this section. It has other important roles, such as in proving
the surprising fact that analytic functions have derivatives of all orders, as shown in the
next section, and in showing that all analytic functions have a Taylor series representation
(to be seen in Sec. 15.4).

T H E O R E M  1 Cauchy’s Integral Formula

Let be analytic in a simply connected domain D. Then for any point in D
and any simple closed path C in D that encloses (Fig. 356),

(1) (Cauchy’s integral formula)

the integration being taken counterclockwise. Alternatively (for representing 
by a contour integral, divide (1) by ),

(1*) (Cauchy’s integral formula).

P R O O F By addition and subtraction, Inserting this into (1) on the
left and taking the constant factor out from under the integral sign, we have

(2)

The first term on the right equals which follows from Example 6 in Sec. 14.2
with . If we can show that the second integral on the right is zero, then it would
prove the theorem. Indeed, we can. The integrand of the second integral is analytic, except

m � �1
f (z0) # 2pi,

�
C

  
f (z)

z � z0
 dz � f (z0)�

C

  
dz

z � z0
� �

C

  
f (z) � f (z0)

z � z0
 dz.

f (z0)
f (z) � f (z0) � [ f (z) � f (z0)].

 f (z0) �
1

2pi
 �

C

  
f (z)

z � z0
 dz

2pi
f (z0)

�
C

  
f (z)

z � z0
 dz � 2pif (z0)

z0

z0f (z)



at . Hence, by (6) in Sec. 14.2, we can replace C by a small circle K of radius and
center (Fig. 357), without altering the value of the integral. Since is analytic, it is
continuous (Team Project 24, Sec. 13.3). Hence, an being given, we can find a

such that for all z in the disk . Choosing the radius
of K smaller than we thus have the inequalityd,r

ƒ z � z0 ƒ � dƒ  f (z) � f (z0) ƒ � Pd 
 0
P 
 0

f (z)z0

rz0
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Fig. 356. Cauchy’s integral formula Fig. 357. Proof of Cauchy’s integral formula

KC

z
0

ρ
C

z
0

D

at each point of K. The length of K is . Hence, by the ML-inequality in Sec. 14.1,

Since can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved.

E X A M P L E  1 Cauchy’s Integral Formula

for any contour enclosing (since is entire), and zero for any contour for which lies outside
(by Cauchy’s integral theorem).

E X A M P L E  2 Cauchy’s Integral Formula

E X A M P L E  3 Integration Around Different Contours

Integrate

counterclockwise around each of the four circles in Fig. 358.

g(z) �
z2 � 1

z2 � 1
�

z2 � 1

(z � 1)(z � 1)
 

�(z0 � 1
2  

i inside C ). �
p

8
� 6pi

 � 2pi 312  
z3 � 34 ƒ z�i>2

 �
C

  
z3 � 6

2z � i
 dz � �

C

 

1
2  

z3 � 3

z � 1
2  i

 dz

�
z0 � 2ezz0 � 2

�
C

  
ez

z � 2
 dz � 2piez `

z�2
� 2pie2 � 46.4268i

�

P (
 0)

2 �
K

 
f (z) � f (z0)

z � z0
 dz 2 � P

r
 2pr � 2pP.

2pr

2  f (z) � f (z0)
z � z0

 2 � P
r

 



Solution. is not analytic at and 1. These are the points we have to watch for. We consider each
circle separately.

(a) The circle encloses the point where is not analytic. Hence in (1) we have to
write

thus

and (1) gives

(b) gives the same as (a) by the principle of deformation of path.

(c) The function is as before, but changes because we must take (instead of 1). This gives
a factor in (1). Hence we must write

thus

Compare this for a minute with the previous expression and then go on:

(d) gives 0. Why? �

�
C

  
z2 � 1

z2 � 1
 dz � 2pif (�1) � 2pi c z

2 � 1

z � 1
d

z��1

� �2pi.

f (z) �
z2 � 1

z � 1
 .

g(z) �
z2 � 1

z � 1
 

1

z � 1
 ;

z � z0 � z � 1
z0 � �1f (z)g(z)

�
C

  
z2 � 1

z2 � 1
 dz � 2pif (1) � 2pi c z

2 � 1

z � 1
d

z�1

� 2pi.

f (z) �
z2 � 1

z � 1
 

g(z) �
z2 � 1

z2 � 1
�

z2 � 1

z � 1
  

1

z � 1
 ;

g(z)z0 � 1ƒ z � 1 ƒ � 1

�1g(z)
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y

x

(a)

(b)

(c)

(d)

1–1

Fig. 358. Example 3

Multiply connected domains can be handled as in Sec. 14.2. For instance, if is
analytic on and and in the ring-shaped domain bounded by and (Fig. 359)
and is any point in that domain, then

(3) f (z0) �
1

2pi
 �

C1

  
f (z)

z � z0
 dz �

1
2pi

 �
C2

  
f (z)

z � z0
 dz,

z0

C2C1C2C1

f (z)



where the outer integral (over ) is taken counterclockwise and the inner clockwise, as
indicated in Fig. 359.

C1
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z
0

C
2

C
1

Fig. 359. Formula (3)

1–4 CONTOUR INTEGRATION 
Integrate by Cauchy’s formula counterclockwise
around the circle.

1. 2.

3. 4.

5–8 Integrate the given function around the unit circle.

5. 6.

7. 8.

9. CAS EXPERIMENT. Experiment to find out to what
extent your CAS can do contour integration. For this,
use (a) the second method in Sec. 14.1 and (b) Cauchy’s
integral formula.

10. TEAM PROJECT. Cauchy’s Integral Theorem.
Gain additional insight into the proof of Cauchy’s
integral theorem by producing (2) with a contour
enclosing (as in Fig. 356) and taking the limit as in
the text. Choose

(a) (b)

and (c) another example of your choice.

11–19 FURTHER CONTOUR INTEGRALS
Integrate counterclockwise or as indicated. Show the
details.

11.

12. , C the circle with center and

radius 2

13.

14. �
C

  
ez

zez � 2iz
 dz, C: ƒ z ƒ � 0.6

�
C

  
z � 2

z � 2
 dz, C: ƒ z � 1 ƒ � 2

�1�
C

  
z

z2 � 4z � 3
 dz

�
C

  
dz

z2 � 4
 , C: 4x2 � ( y � 2)2 � 4

�
C

  
sin z

z � 1
2 
p

 dz,�
C

  
z3 � 6

z � 1
2 

i
 dz,

z0

(z2 sin z)>(4z � 1)z3>(2z � i)

e2z>(pz � i)(cos 3z)>(6z)

ƒ z � 5 � 5i ƒ � 7ƒ z � i ƒ � 1.4

ƒ z � 1 � i ƒ � p>2ƒ z � 1 ƒ � 1

z2>(z2 � 1)
15. , C the boundary of the square

with vertices 

16. , C the boundary of the triangle with

vertices 0 and 

17. , C: 

18. , C consists of the boundaries of the

squares with vertices counterclockwise and
clockwise (see figure).�1, �i

�3, �3i

�
C

  
sin z

4z2 � 8iz
 dz

ƒ z � i ƒ � 1.4�
C

 
Ln (z � 1)

z2 � 1
 dz

�1 � 2i.

�
C

  
tan z

z � i
 dz

�2, �2, �4i.

�
C

 
cosh (z2 � pi)

z � pi
 dz

P R O B L E M  S E T  1 4 . 3

y

x3

2i

–3i

3i

–3

Problem 18

19. , C consists of counter-

clockwise and clockwise.

20. Show that for a simple

closed path C enclosing and , which are
arbitrary.

z2z1

�
C

 (z � z1)�1(z � z2)�1 dz � 0

ƒ z ƒ � 1

ƒ z ƒ � 2�
C

  
exp z2

z2(z � 1 � i)
 dz



14.4 Derivatives of Analytic Functions
As mentioned, a surprising fact is that complex analytic functions have derivatives of all
orders. This differs completely from real calculus. Even if a real function is once
differentiable we cannot conclude that it is twice differentiable nor that any of its higher
derivatives exist. This makes the behavior of complex analytic functions simpler than real
functions in this aspect. To prove the surprising fact we use Cauchy’s integral formula.

T H E O R E M  1 Derivatives of an Analytic Function

If is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point 
in D are given by the formulas

and in general

(1)

here C is any simple closed path in D that encloses and whose full interior belongs
to D; and we integrate counterclockwise around C (Fig. 360).

z0

(n � 1, 2, Á ); f (n)(z0) �
n!

2pi
 �

C

  
f (z)

(z � z0)n�1 dz

f s(z0) �
2!

2pi
 �

C

  
f (z)

(z � z0)3 dz(1s)

f r(z0) �
1

2pi
 �

C

  
f (z)

(z � z0)2 dz(1r)

z0

f (z)
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D

C

z
0

d

Fig. 360. Theorem 1 and its proof

COMMENT. For memorizing (1), it is useful to observe that these formulas are obtained
formally by differentiating the Cauchy formula Sec. 14.3, under the integral sign
with respect to 

P R O O F We prove starting from the definition of the derivative

f r(z0) � lim
¢z:0

 
f (z0 � ¢z) � f (z0)

¢z
 .

(1r),

z0.
(1*),



On the right we represent and by Cauchy’s integral formula:

We now write the two integrals as a single integral. Taking the common denominator
gives the numerator so that a factor drops
out and we get

Clearly, we can now establish by showing that, as the integral on the right
approaches the integral in To do this, we consider the difference between these two
integrals. We can write this difference as a single integral by taking the common
denominator and simplifying the numerator (as just before). This gives

We show by the ML-inequality (Sec. 14.1) that the integral on the right approaches zero
as 

Being analytic, the function is continuous on C, hence bounded in absolute value,
say, Let d be the smallest distance from to the points of C (see Fig. 360).
Then for all z on C,

Furthermore, by the triangle inequality for all z on C we then also have

We now subtract on both sides and let so that Then

Let L be the length of C. If then by the ML-inequality

This approaches zero as Formula is proved.
Note that we used Cauchy’s integral formula Sec. 14.3, but if all we had known

about is the fact that it can be represented by Sec. 14.3, our argument would
have established the existence of the derivative of This is essential to thef (z).f r(z0)

(1*),f (z0)
(1*),

(1r)¢z: 0.

2 �
C

 
f (z) ¢z

(z � z0 � ¢z)(z � z0)2
 dz 2 � KL ƒ ¢z ƒ  2

d
# 1

d2
 .

ƒ ¢z ƒ � d>2,

1
2 

d � d � ƒ ¢z ƒ � ƒ z � z0 � ¢z ƒ .  Hence  1
ƒ z � z0 � ¢z ƒ

�
2
d

 .

� ƒ ¢z ƒ 	 �d>2.ƒ ¢z ƒ � d>2,ƒ ¢z ƒ

d � ƒ z � z0 ƒ � ƒ z � z0 � ¢z � ¢z ƒ � ƒ z � z0 � ¢z ƒ � ƒ ¢z ƒ .

ƒ z � z0 ƒ 2 	 d2,  hence  1

ƒ z � z0 ƒ 2
 �

1

d2
 .

z0ƒ f (z) ƒ � K.
f (z)

¢z: 0.

�
C

  
f (z)

(z � z0 � ¢z)(z � z0)
 dz � �

C

  
f (z)

(z � z0)2 dz � �
C

  
f (z) ¢z

(z � z0 � ¢z)(z � z0)2 dz.

(1r).
¢z: 0,(1r)

f (z0 � ¢z) � f (z0)

¢z
�

1

2pi
 �

C

  
f (z)

(z � z0 � ¢z)(z � z0)
 dz.

¢zf (z){z � z0 � [z � (z0 � ¢z)]} � f (z) ¢z,

f (z0 � ¢z) � f (z0)

¢z
�

1

2pi¢z
  B�

C

  
f (z)

z � (z0 � ¢z)
 dz � �

C

  
f (z)

z � z0
 dzR .

f (z0)f (z0 � ¢z)
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continuation and completion of this proof, because it implies that can be proved by
a similar argument, with f replaced by and that the general formula (1) follows by
induction.

Applications of Theorem 1

E X A M P L E  1 Evaluation of Line Integrals

From for any contour enclosing the point (counterclockwise)

E X A M P L E  2 From for any contour enclosing the point we obtain by counterclockwise integration

E X A M P L E  3 By for any contour for which 1 lies inside and lie outside (counterclockwise),

Cauchy’s Inequality. Liouville’s and Morera’s Theorems
We develop other general results about analytic functions, further showing the versatility
of Cauchy’s integral theorem.

Cauchy’s Inequality. Theorem 1 yields a basic inequality that has many applications.
To get it, all we have to do is to choose for C in (1) a circle of radius r and center and
apply the ML-inequality (Sec. 14.1); with on C we obtain from (1)

This gives Cauchy’s inequality

(2)

To gain a first impression of the importance of this inequality, let us prove a famous
theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 11.5.)

T H E O R E M  2 Liouville’s Theorem

If an entire function is bounded in absolute value in the whole complex plane, then
this function must be a constant.

ƒ  f (n)(z0) ƒ �
n!M

r n  .

ƒ  f (n)(z0) ƒ �
n!

2p
 2 �

C

 
f (z)

(z � z0)n�1
 dz 2 � n!

2p
 M 

1

r n�1
 2pr.

ƒ f (z) ƒ � M
z0

� � 2pi 
ez(z2 � 4) � ez2z

(z2 � 4)2  `
z�1

�
6ep

25
 i � 2.050i.

 �
C

  
ez

(z � 1)2(z2 � 4)
 dz � 2pi a ez

z2 � 4
br `

z�1

�2i(1r),

��
C

  
z4 � 3z2 � 6

(z � i)3  dz � pi(z4 � 3z2 � 6)s `
z��i

� pi [12z2 � 6]z��i � �18pi.

�i(1s),

��
C

   
cos z

(z � pi)2 dz � 2pi(cos z)r `
z�pi

� �2pi sin pi � 2p sinh p.

pi(1r),

�

f r,
(1s)
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P R O O F By assumption, is bounded, say, for all z. Using (2), we see that
Since is entire, this holds for every r, so that we can take r as large

as we please and conclude that Since is arbitrary, for
all z (see (4) in Sec. 13.4), hence and by the Cauchy–Riemann
equations. Thus and for all z. This completes
the proof.

Another very interesting consequence of Theorem 1 is

T H E O R E M  3 Morera’s2 Theorem (Converse of Cauchy’s Integral Theorem)

If is continuous in a simply connected domain D and if

(3)

for every closed path in D, then is analytic in D.

P R O O F In Sec. 14.2 we showed that if is analytic in a simply connected domain D, then

is analytic in D and In the proof we used only the continuity of and the
property that its integral around every closed path in D is zero; from these assumptions
we concluded that is analytic. By Theorem 1, the derivative of is analytic, that
is, is analytic in D, and Morera’s theorem is proved.

This completes Chapter 14.

�f (z)
F(z)F(z)

f (z)F r(z) � f (z).

F(z) � �
z

z0

 
f (z*) dz*

f (z)

f (z)

�
C  

f (z) dz � 0

f (z)

�

f � u � iv � constu � const, v � const,
uy � vy � 0ux � vx � 0,

f r(z) � ux � ivx � 0z0f r(z0) � 0.
f (z)ƒ  f r(z0) ƒ � K>r.

ƒ  f (z) ƒ � Kƒ f (z) ƒ

SEC. 14.4 Derivatives of Analytic Functions 667

1–7 CONTOUR INTEGRATION. UNIT CIRCLE
Integrate counterclockwise around the unit circle.

1. 2.

3. 4.

5. 6.

7. �
C

   
cos z

z2n�1
 dz, n � 0, 1, Á

�
C

   
dz

(z � 2i)2(z � i>2)2�
C

   
cosh 2z

(z � 1
2)4

 dz

�
C

  
ez cos z

(z � p>4)3
 dz�

C

   
ez

zn dz, n � 1, 2, Á

�
C

  
z6

(2z � 1)6
 dz�

C

  
sin z

z4
 dz

8–19 INTEGRATION. DIFFERENT CONTOURS

Integrate. Show the details. Hint. Begin by sketching the
contour. Why?

8. C the boundary of the square with

vertices counterclockwise.

9. C the ellipse clockwise.

10. C consists of counter-

clockwise and clockwise.ƒ z ƒ � 1

ƒ z ƒ � 3�
C

   
4z3 � 6

z(z � 1 � i)2
 dz,

16x2 � y2 � 1�
C

  
tan pz

z2
 dz,

�2, �2i

�
C

  
z3 � sin z

(z � i)3
 dz,

P R O B L E M  S E T  1 4 . 4

2GIACINTO MORERA (1856–1909), Italian mathematician who worked in Genoa and Turin.



11. counterclockwise.

12. clockwise.

13. counterclockwise.

14. C the boundary of the square

with vertices counterclockwise.

15. C consists of counterclock-

wise and clockwise.

16. C consists of counter-

clockwise and clockwise.

17. C consists of counterclock-

wise and clockwise.ƒ z � 3 ƒ � 3
2 

ƒ z ƒ � 5�
C

  
e�z sin z

(z � 4)3
 dz,

ƒ z ƒ � 1

ƒ z � i ƒ � 3�
C

  
e4z

z(z � 2i)2
 dz,

ƒ z � 3 ƒ � 2

ƒ z ƒ � 6�
C

  
cosh 4z

(z � 4)3
 dz,

�1.5, �1.5i,

�
C

  
Ln (z � 3)

(z � 2)(z � 1)2
 dz,

�
C

  
Ln z

(z � 2)2
 dz, C: ƒ z � 3 ƒ � 2

�
C

   
exp (z2)

z(z � 2i)2
 dz, C: z � 3i ƒ � 2

�
C

  
(1 � z) sin z

(2z � 1)2
 dz, C: ƒ z � i ƒ � 2
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18. counterclockwise, n integer.

19. counterclockwise.

20. TEAM PROJECT. Theory on Growth

(a) Growth of entire functions. If is not a
constant and is analytic for all (finite) z, and R and
M are any positive real numbers (no matter how
large), show that there exist values of z for which

and Hint. Use Liouville’s
theorem.

(b) Growth of polynomials. If is a polynomial
of degree and M is an arbitrary positive
real number (no matter how large), show that
there exists a positive real number R such that

for all 

(c) Exponential function. Show that has
the property characterized in (a) but does not have
that characterized in (b).

(d) Fundamental theorem of algebra. If is a
polynomial in z, not a constant, then for
at least one value of z. Prove this. Hint. Use (a).

f (z) � 0
f (z)

f (z) � ex

ƒ z ƒ 
 R.ƒ  f (z) ƒ 
 M

n 
 0
f (z)

ƒ  f (z) ƒ 
 M.ƒ z ƒ 
 R

f (z)

�
C

   
e3z

(4z � pi)3
 dz, C: ƒ z ƒ � 1,

�
C

  
sinh z

zn  dz, C: ƒ z ƒ � 1

1. What is a parametric representation of a curve? What
is its advantage?

2. What did we assume about paths of integration 
What is geometrically?

3. State the definition of a complex line integral from
memory.

4. Can you remember the relationship between complex
and real line integrals discussed in this chapter?

5. How can you evaluate a line integral of an analytic
function? Of an arbitrary continous complex function?

6. What value do you get by counterclockwise integration
of around the unit circle? You should remember
this. It is basic.

7. Which theorem in this chapter do you regard as most
important? State it precisely from memory.

8. What is independence of path? Its importance? State a
basic theorem on independence of path in complex.

9. What is deformation of path? Give a typical example.

10. Don’t confuse Cauchy’s integral theorem (also known
as Cauchy–Goursat theorem) and Cauchy’s integral
formula. State both. How are they related?

11. What is a doubly connected domain? How can you
extend Cauchy’s integral theorem to it?

1>z

z
#

� dz>dt
z � z(t)?

12. What do you know about derivatives of analytic
functions?

13. How did we use integral formulas for derivatives in
evaluating integrals?

14. How does the situation for analytic functions differ
with respect to derivatives from that in calculus?

15. What is Liouville’s theorem? To what complex func-
tions does it apply?

16. What is Morera’s theorem?

17. If the integrals of a function over each of the two
boundary circles of an annulus D taken in the same
sense have different values, can be analytic every-
where in D? Give reason.

18. Is ? Give reason.

19. Is ?

20. How would you find a bound for the left side in Prob. 19?

21–30 INTEGRATION

Integrate by a suitable method.

21. from 0 to pi>2.�
C

 
z sinh (z2) dz

2 �
C
   f (z) dz 2 � �

C 
ƒ  f (z) ƒ  dz

Im �
C  

f (z) dz � �
C  

Im f (z) dz

f (z)

f (z)
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22. clockwise around the unit circle.

23. counterclockwise around 

24. from 0 to along 

25. clockwise around 

26. from horizontally to then

vertically upward to 2 � 2i.

z � 2,z � 0�
C

 
(z2 � z2) dz

ƒ z � 1 ƒ � 0.1.�
C

 
tan pz

(z � 1)2
 dz

y � x3.3 � 27i�
C

Re z dz

ƒ z ƒ � p.�
C

 
z�5ez dz

�
C

 
( ƒ z ƒ � z) dz
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27. from 0 to shortest path.

28. counterclockwise around 

29. clockwise around

30. from 0 to (1 � i).�
C

 sin  z dz

ƒ z � 1 ƒ � 2.5.

�
C  
a 2

z � 2i
�

1
z � 4i

b dz

ƒ z � 1 ƒ � 1
2.�

C

  
Ln z

(z � 2i)2
 dz

2 � 2i,�
C

(z2 � z 2) dz

The complex line integral of a function taken over a path C is denoted by

(1) or, if C is closed, also by (Sec. 14.1).

If is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

(2)

for every path C in D from a point to a point (see Sec. 14.1). These assumptions
imply independence of path, that is, (2) depends only on and (and on 
of course) but not on the choice of C (Sec. 14.2). The existence of an such that

is proved in Sec. 14.2 by Cauchy’s integral theorem (see below).
A general method of integration, not restricted to analytic functions, uses the

equation of C, where 

(3)

Cauchy’s integral theorem is the most important theorem in this chapter. It states
that if is analytic in a simply connected domain D, then for every closed path
C in D (Sec. 14.2),

(4) �
C  

f (z) dz � 0.

f (z)

az# � dz

dt
b .�

C

 f (z) dz � �
b

a

f (z(t))z
#
(t) dt

a � t � b,z � z(t)

Fr(z) � f (z)
F(z)

f (z),z1z0

z1z0

[F r(z) � f (z)]�
C

 f (z) dz � F(z1) � F(z0)

f (z)

�
C  

f (z)�
C

 
f (z) dz

f (z)

SUMMARY OF CHAPTER 14
Complex Integration
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Under the same assumptions and for any in D and closed path C in D containing
in its interior we also have Cauchy’s integral formula

(5)

Furthermore, under these assumptions has derivatives of all orders in D that are
themselves analytic functions in D and (Sec. 14.4)

(6)

This implies Morera’s theorem (the converse of Cauchy’s integral theorem) and
Cauchy’s inequality (Sec. 14.4), which in turn implies Liouville’s theorem that an
entire function that is bounded in the whole complex plane must be constant.

(n � 1, 2, Á ).f (n)(z0) �
n!

2pi
 �

C

  
f (z)

(z � z0)n�1
 dz

f (z)

f (z0) �
1

2pi
 �

C

  
f (z)

z � z0
 dz.

z0

z0
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C H A P T E R 1 5

Power Series, Taylor Series

In Chapter 14, we evaluated complex integrals directly by using Cauchy’s integral formula,
which was derived from the famous Cauchy integral theorem. We now shift from the
approach of Cauchy and Goursat to another approach of evaluating complex integrals,
that is, evaluating them by residue integration. This approach, discussed in Chapter 16,
first requires a thorough understanding of power series and, in particular, Taylor series.
(To develop the theory of residue integration, we still use Cauchy’s integral theorem!)

In this chapter, we focus on complex power series and in particular Taylor series. They
are analogs of real power series and Taylor series in calculus. Section 15.1 discusses
convergence tests for complex series, which are quite similar to those for real series. Thus,
if you are familiar with convergence tests from calculus, you may use Sec. 15.1 as a
reference section. The main results of this chapter are that complex power series represent
analytic functions, as shown in Sec. 15.3, and that, conversely, every analytic function
can be represented by power series, called a Taylor series, as shown in Sec. 15.4. The last
section (15.5) on uniform convergence is optional.

Prerequisite: Chaps. 13, 14.
Sections that may be omitted in a shorter course: 15.1, 15.5.
References and Answers to Problems: App. 1 Part D, App. 2.

15.1 Sequences, Series, Convergence Tests
The basic concepts for complex sequences and series and tests for convergence and
divergence are very similar to those concepts in (real) calculus. Thus if you feel at home
with real sequences and series and want to take for granted that the ratio test also holds
in complex, skip this section and go to Section 15.2.

Sequences
The basic definitions are as in calculus. An infinite sequence or, briefly, a sequence, is
obtained by assigning to each positive integer n a number called a term of the sequence,
and is written

We may also write or or start with some other integer if convenient.
A real sequence is one whose terms are real.

z2, z3, Áz0, z1, Á

z1, z2, Á    or   {z1, z2, Á }   or briefly   {zn}.

zn,



Convergence. A convergent sequence is one that has a limit c, written

By definition of limit this means that for every we can find an N such that

(1) for all 

geometrically, all terms with lie in the open disk of radius and center c (Fig. 361)
and only finitely many terms do not lie in that disk. [For a real sequence, (1) gives an open
interval of length and real midpoint c on the real line as shown in Fig. 362.]

A divergent sequence is one that does not converge.
2P

Pn 
 Nzn

n 
 N;ƒ zn � c ƒ � P

P 
 0

lim
n:�   

zn � c   or simply   zn:  c.

z1, z2, Á
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y

x

c

∈

xcc – ∈ c +∈

Fig. 361. Convergent complex sequence Fig. 362. Convergent real sequence

E X A M P L E  1 Convergent and Divergent Sequences

The sequence is convergent with limit 0.
The sequence is divergent, and so is with 

E X A M P L E  2 Sequences of the Real and the Imaginary Parts

The sequence with is 
(Sketch it.) It converges with the limit Observe that has the limit and has
the limit This is typical. It illustrates the following theorem by which the convergence of a
complex sequence can be referred back to that of the two real sequences of the real parts and the imaginary
parts.

T H E O R E M  1 Sequences of the Real and the Imaginary Parts

A sequence of complex numbers (where  
converges to if and only if the sequence of the real parts 

converges to a and the sequence of the imaginary parts converges to b.

P R O O F Convergence implies convergence and because if
then lies within the circle of radius about so that (Fig. 363a)

Conversely, if and as then for a given we can choose
N so large that, for every 

ƒ xn � a ƒ �
P
2

 ,   ƒ yn � b ƒ �
P
2

 .

n 
 N,
P 
 0n:  �,yn:  bxn:  a

ƒ xn � a ƒ � P,   ƒ yn � b ƒ � P.

c � a � ib,Pznƒ zn � c ƒ � P,
yn:  bxn:  azn:  c � a � ib

y1, y2, Á
x1, x2, Ác � a � ib2, Á )

n � 1,zn � xn � iynz1, z2, Á , zn, Á

�

2 � Im c.
{yn}1 � Re c{xn}c � 1 � 2i.

6i, 34 � 4i, 89 � 10i>3, 15
16 � 3i, Á .zn � xn � iyn � 1 � 1>n2 � i(2 � 4>n){zn}

�zn � (1 � i)n.{zn}{in} � {i, �1, �i, 1, Á }
{in>n} � {i, � 

1
2 , �i>3, 14 , Á }



y

x

c

b +∈

b

b –∈

aa –∈ a +∈

(a)

y

x

cb

a

(b)

b + ∈
2

b – ∈
2

a – ∈
2

a + ∈
2

These two inequalities imply that lies in a square with center c and side
Hence, must lie within a circle of radius with center c (Fig. 363b).

Series
Given a sequence we may form the sequence of the sums

and in general

(2)

Here is called the nth partial sum of the infinite series or series

(3)

The are called the terms of the series. (Our usual summation letter is n, unless
we need n for another purpose, as here, and we then use m as the summation letter.)

A convergent series is one whose sequence of partial sums converges, say,

Then we write

and call s the sum or value of the series. A series that is not convergent is called a divergent
series.

If we omit the terms of from (3), there remains

(4)

This is called the remainder of the series (3) after the term Clearly, if (3) converges
and has the sum s, then

thus

Now by the definition of convergence; hence In applications, when s is
unknown and we compute an approximation of s, then is the error, and 
means that we can make as small as we please, by choosing n large enough.ƒRn ƒ

Rn:  0ƒRn ƒsn

Rn:  0.sn:  s

Rn � s � sn.s � sn � Rn,

zn.

Rn � zn�1 � zn�2 � zn�3 � Á .

sn

s � a
�

m�1

zm � z1 � z2 � Álim
n:�

 sn � s.

z1, z2, Á

a
�

m�1

 zm � z1 � z2 � Á .

sn

(n � 1, 2, Á ).sn � z1 � z2 � Á � zn

s1 � z1,   s2 � z1 � z2,   s3 � z1 � z2 � z3, Á

z1, z2, Á , zm, Á ,

�PznP.
zn � xn � iyn

SEC. 15.1 Sequences, Series, Convergence Tests 673

Fig. 363. Proof of Theorem 1



An application of Theorem 1 to the partial sums immediately relates the convergence
of a complex series to that of the two series of its real parts and of its imaginary parts:

T H E O R E M  2 Real and Imaginary Parts

A series (3) with converges and has the sum if and
only if converges and has the sum u and converges
and has the sum v.

Tests for Convergence and Divergence of Series
Convergence tests in complex are practically the same as in calculus. We apply them
before we use a series, to make sure that the series converges.

Divergence can often be shown very simply as follows.

T H E O R E M  3 Divergence

If a series converges, then Hence if this does not hold,
the series diverges.

P R O O F If converges, with the sum s, then, since 

CAUTION! is necessary for convergence but not sufficient, as we see from the
harmonic series which satisfies this condition but diverges, as is
shown in calculus (see, for example, Ref. [GenRef11] in App. 1).

The practical difficulty in proving convergence is that, in most cases, the sum of a series
is unknown. Cauchy overcame this by showing that a series converges if and only if its
partial sums eventually get close to each other:

T H E O R E M  4 Cauchy’s Convergence Principle for Series

A series is convergent if and only if for every given (no matter
how small) we can find an N (which depends on in general) such that

(5) for every and

The somewhat involved proof is left optional (see App. 4).

Absolute Convergence. A series is called absolutely convergent if the
series of the absolute values of the terms

is convergent.

a
�

m�1

ƒ zm ƒ � ƒ z1 ƒ � ƒ z2 ƒ � Á

z1 � z2 � Á

p � 1, 2, Án 
 Nƒ zn�1 � zn�2 � Á � zn�p ƒ � P

P,
P 
 0z1 � z2 � Á

1 � 1
2 � 1

3 � 1
4 � Á ,

zm:  0

�lim
m:�  

zm � lim
m:�

(sm � sm�1) � lim
m:�  

sm � lim
m:�  

sm�1 � s � s � 0.

zm � sm � sm�1,z1 � z2 � Á

lim
m:�

 zm � 0.z1 � z2 � Á

y1 � y2 � Áx1 � x2 � Á
s � u � ivzm � xm � iym
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If converges but diverges, then the series 
is called, more precisely, conditionally convergent.

E X A M P L E  3 A Conditionally Convergent Series

The series converges, but only conditionally since the harmonic series diverges, as
mentioned above (after Theorem 3).

If a series is absolutely convergent, it is convergent.

This follows readily from Cauchy’s principle (see Prob. 29). This principle also yields
the following general convergence test.

T H E O R E M  5 Comparison Test

If a series is given and we can find a convergent series 
with nonnegative real terms such that then the given series
converges, even absolutely.

P R O O F By Cauchy’s principle, since converges, for any given we can find
an N such that

for every and 

From this and we conclude that for those n and p,

Hence, again by Cauchy’s principle, converges, so that is
absolutely convergent.

A good comparison series is the geometric series, which behaves as follows.

T H E O R E M  6 Geometric Series

The geometric series

(6*)

converges with the sum if and diverges if 

P R O O F If then and Theorem 3 implies divergence.
Now let The nth partial sum is

From this,

 qsn �  q � Á � qn � qn�1.

 sn �  1 � q � Á � qn.

ƒq ƒ � 1.
ƒqm ƒ 	 1ƒq ƒ 	 1,

ƒq ƒ 	 1.ƒq ƒ � 11>(1 � q)

a
�

m�0

 q
m � 1 � q � q2 � Á

�

z1 � z2 � Áƒ z1 ƒ � ƒ z2 ƒ � Á

ƒ zn�1 ƒ � Á � ƒ zn�p ƒ � bn�1 � Á � bn�p � P.

ƒ z1 ƒ � b1, ƒ z2 ƒ � b2, Á

p � 1, 2, Á .n 
 Nbn�1 � Á � bn�p � P

P 
 0b1 � b2 � Á

ƒ z1 ƒ � b1, ƒ z2 ƒ � b2, Á ,
b1 � b2 � Áz1 � z2 � Á

�
1 � 1

2 � 1
3 � 1

4 � � Á

z1 � z2 � Áƒ z1 ƒ � ƒ z2 ƒ � Áz1 � z2 � Á
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On subtraction, most terms on the right cancel in pairs, and we are left with

Now since and we may solve for finding

(6)

Since the last term approaches zero as Hence if the series is
convergent and has the sum This completes the proof.

Ratio Test
This is the most important test in our further work. We get it by taking the geometric
series as comparison series in Theorem 5:

T H E O R E M  7 Ratio Test

If a series with has the property that for every
n greater than some N,

(7)

(where is fixed ), this series converges absolutely. If for every 

(8)

the series diverges.

P R O O F If (8) holds, then for so that divergence of the series follows from
Theorem 3.

If (7) holds, then for in particular,

etc.,

and in general, Since we obtain from this and Theorem 6

Absolute convergence of now follows from Theorem 5. �z1 � z2 � Á

ƒ zN�1 ƒ � ƒ zN�2 ƒ � ƒ zN�3 ƒ � Á � ƒ zN�1 ƒ  (1 � q � q2 � Á ) � ƒ zN�1 ƒ  1
1 � q

 .

q � 1,ƒ zN�p ƒ � ƒ zN�1 ƒqp�1.

ƒ zN�2 ƒ � ƒ zN�1 ƒq,   ƒ zN�3 ƒ � ƒ zN�2 ƒq � ƒ zN�1 ƒq2,

n 
 N,ƒ zn�1 ƒ � ƒ zn ƒ  q

n 
 N,ƒ zn�1 ƒ 	 ƒ zn ƒ

(n 
 N),`  zn�1

zn
` 	 1

n 
 N,q � 1

(n 
 N)` zn�1

zn
` � q � 1

zn � 0 (n � 1, 2, Á )z1 � z2 � Á

b1 � b2 � Á

�1>(1 � q).
ƒq ƒ � 1,n: �.ƒq ƒ � 1,

sn �
1 � qn�1

1 � q
�

1
1 � q

�
qn�1

1 � q
 .

sn,q � 1,1 � q � 0

sn � qsn � (1 � q)sn � 1 � qn�1.
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CAUTION! The inequality (7) implies but this does not imply con-
vergence, as we see from the harmonic series, which satisfies for
all n but diverges.

If the sequence of the ratios in (7) and (8) converges, we get the more convenient

T H E O R E M  8 Ratio Test

If a series with is such that 
then:

(a) If the series converges absolutely.

(b) If the series diverges.

(c) If the series may converge or diverge, so that the test fails and
permits no conclusion.

P R O O F (a) We write and let Then by the definition of limit, the
must eventually get close to say, for all n greater than

some N. Convergence of now follows from Theorem 7.

(b) Similarly, for we have for all (sufficiently
large), which implies divergence of by Theorem 7.

(c) The harmonic series has hence and
diverges. The series

has

hence also but it converges. Convergence follows from (Fig. 364)

so that is a bounded sequence and is monotone increasing (since the terms of
the series are all positive); both properties together are sufficient for the convergence of
the real sequence (In calculus this is proved by the so-called integral test, whose
idea we have used.) �

s1, s2, Á .

s1, s2, Á

sn � 1 �
1
4

� Á �
1
n2 � 1 � �

n

1

 
dx
x2  � 2 �

1
n

 ,

L � 1,

zn�1

zn
�

n2

(n � 1)2 ,1 �
1
4

�
1
9

�
1

16
�

1
25

� Á

L � 1,zn�1>zn � n>(n � 1),1 � 1
2 � 1

3 � Á
z1 � z2 � Á

n 
 N*kn 	 1 � 1
2 c 
 1L � 1 � c 
 1

z1 � z2 � Á
kn � q � 1 � 1

2 b � 11 � b,kn

L � 1 � b � 1.kn � ƒ zn�1>zn ƒ

L � 1,

L 
 1,

L � 1,

lim
n:�  

` zn�1

zn
` � L,zn � 0 (n � 1, 2, Á )z1 � z2 � Á

zn�1>zn � n>(n � 1) � 1
ƒ zn�1>zn ƒ � 1,
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E X A M P L E  4 Ratio Test

Is the following series convergent or divergent? (First guess, then calculate.)

Solution. By Theorem 8, the series is convergent, since

E X A M P L E  5 Theorem 7 More General Than Theorem 8

Let and Is the following series convergent or divergent?

Solution. The ratios of the absolute values of successive terms are Hence convergence follows
from Theorem 7. Since the sequence of these ratios has no limit, Theorem 8 is not applicable.

Root Test
The ratio test and the root test are the two practically most important tests. The ratio test
is usually simpler, but the root test is somewhat more general.

T H E O R E M  9 Root Test

If a series is such that for every n greater than some N,

(9)

(where is fixed ), this series converges absolutely. If for infinitely many n,

(10)

the series diverges.

P R O O F If (9) holds, then for all Hence the series 
converges by comparison with the geometric series, so that the series 
converges absolutely. If (10) holds, then for infinitely many n. Divergence of

now follows from Theorem 3.

CAUTION! Equation (9) implies but this does not imply convergence, as 
we see from the harmonic series, which satisfies (for but diverges.n 
 1)2

n
1>n � 1

2
n ƒ zn ƒ � 1,

�z1 � z2 � Á
ƒ zn ƒ 	 1

z1 � z2 � Á
ƒ z1 ƒ � ƒ z2 ƒ � Án 
 N.ƒ zn ƒ � qn � 1

2
n ƒ zn ƒ 	 1,

q � 1

(n 
 N)2
n ƒ zn ƒ � q � 1

z1 � z2 � Á

�

1
2 , 14 , 12 , 14 , Á .

a0 � b0 � a1 � b1 � Á � i �
1

2
�

i

8
�

1

16
�

i

64
�

1

128
� Á

bn � 1>23n�1.an � i>23n

�` zn�1

zn

` �
ƒ 100 � 75i ƒn�1>(n � 1)!

ƒ100 � 75i ƒn>n!
�

ƒ100 � 75i ƒ
n � 1

�
125

n � 1
  :   L � 0.

a
�

n�0

  
(100 � 75i)n

n!
� 1 � (100 � 75i) �

1

2!
 (100 � 75i)2 � Á
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If the sequence of the roots in (9) and (10) converges, we more conveniently have

T H E O R E M  1 0 Root Test

If a series is such that then:

(a) The series converges absolutely if 

(b) The series diverges if 

(c) If the test fails; that is, no conclusion is possible.L � 1,

L 
 1.

L � 1.

lim
n:�

 2
n ƒ zn ƒ � L,z1 � z2 � Á
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1–10 SEQUENCES
Is the given sequence bounded? Con-
vergent? Find its limit points. Show your work in detail.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. CAS EXPERIMENT. Sequences. Write a program
for graphing complex sequences. Use the program to
discover sequences that have interesting “geometric”
properties, e.g., lying on an ellipse, spiraling to its limit,
having infinitely many limit points, etc.

12. Addition of sequences. If converges with
the limit l and converges with the limit 
show that is convergent with the
limit 

13. Bounded sequence. Show that a complex sequence
is bounded if and only if the two corresponding
sequences of the real parts and of the imaginary parts
are bounded.

14. On Theorem 1. Illustrate Theorem 1 by an example
of your own.

15. On Theorem 2. Give another example illustrating
Theorem 2.

16–25 SERIES
Is the given series convergent or divergent? Give a reason.
Show details.

16. 17.

18. 19. a
�

n�0

  
in

n2 � i
a
�

n�1

 n
2 a i

4
b

n

a
�

n�2

  
(�i)n

ln na
�

n�0

 
(20 � 30i)n

n!

l � l*.
z1 � z*1, z2 � z*2, Á

l*,z*1, z*2, Á
z1, z2, Á

zn � sin (1
4 np) � inzn � (3 � 3i)�n

zn � [(1 � 3i)>110 ]nzn � n2 � i>n2

zn � (cos npi)>nzn � (�1)n � 10i

zn � (1 � 2i)nzn � np>(4 � 2ni)

zn � (3 � 4i)n>n!zn � (1 � i)2n>2n

z1, z2, Á , zn, Á
20.

21.

22.

23.

24.

25.

26. Significance of (7). What is the difference between (7)
and just stating ?

27. On Theorems 7 and 8. Give another example showing
that Theorem 7 is more general than Theorem 8.

28. CAS EXPERIMENT. Series. Write a program for
computing and graphing numeric values of the first n
partial sums of a series of complex numbers. Use the
program to experiment with the rapidity of convergence
of series of your choice.

29. Absolute convergence. Show that if a series converges
absolutely, it is convergent.

30. Estimate of remainder. Let so
that the series converges by the ratio test.
Show that the remainder 
satisfies the inequality Using
this, find how many terms suffice for computing the
sum s of the series

with an error not exceeding 0.05 and compute s to this
accuracy.

a
�

n�1

  
n � i

2nn

(1 � q).ƒRn ƒ � ƒ zn�1 ƒ >
zn�2 � ÁRn � zn�1 �

z1 � z2 � Á
ƒ zn�1>zn ƒ � q � 1,

ƒ zn�1>zn ƒ � 1

a
�

n�1

 
in

n

a
�

n�1

 
(3i)nn!

nn

a
�

n�0

 
(�1)n(1 � i)2n

(2n)!

a
�

n�1

 
1

1n

a
�

n�0

 
(p � pi)2n�1

(2n � 1)!

a
�

n�0

 
n � i

3n2 � 2i
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15.2 Power Series
The student should pay close attention to the material because we shall show how power
series play an important role in complex analysis. Indeed, they are the most important series
in complex analysis because their sums are analytic functions (Theorem 5, Sec. 15.3), and
every analytic function can be represented by power series (Theorem 1, Sec. 15.4).

A power series in powers of is a series of the form

(1)

where z is a complex variable, are complex (or real) constants, called the
coefficients of the series, and is a complex (or real) constant, called the center of the
series. This generalizes real power series of calculus.

If we obtain as a particular case a power series in powers of z:

(2)

Convergence Behavior of Power Series
Power series have variable terms (functions of z), but if we fix z, then all the concepts
for series with constant terms in the last section apply. Usually a series with variable
terms will converge for some z and diverge for others. For a power series the situation is
simple. The series (1) may converge in a disk with center or in the whole z-plane or
only at . We illustrate this with typical examples and then prove it.

E X A M P L E  1 Convergence in a Disk. Geometric Series

The geometric series

converges absolutely if and diverges if (see Theorem 6 in Sec. 15.1).

E X A M P L E  2 Convergence for Every z

The power series (which will be the Maclaurin series of in Sec. 15.4)

is absolutely convergent for every z. In fact, by the ratio test, for any fixed z,

as �n :  �.` z
n�1>(n � 1)!

zn>n!
 ` �

ƒ z ƒ
n � 1

 :  0

a
�

n�0

  
zn

n!
 � 1 � z �

z2

2!
�

z3

3!
� Á

ez

�ƒ z ƒ 	 1ƒ z ƒ � 1

a
�

n�0

 zn � 1 � z � z2 � Á

z0

z0

a
�

n�0

 anzn � a0 � a1z � a2z2 � Á .

z0 � 0,

z0

a0, a1, Á

a
�

n�0

 an(z � z0)n � a0 � a1(z � z0) � a2(z � z0)2 � Á

z � z0
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y

x
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Divergent

z
0

z
1

z
2

Fig. 365. Theroem 1

E X A M P L E  3 Convergence Only at the Center. (Useless Series)

The following power series converges only at , but diverges for every , as we shall show.

In fact, from the ratio test we have

as (z fixed and 

T H E O R E M  1 Convergence of a Power Series

(a) Every power series (1) converges at the center 

(b) If (1) converges at a point it converges absolutely for every z
closer to than that is, See Fig. 365.

(c) If (1) diverges at it diverges for every z farther away from than
See Fig. 365.z2.

z0z � z2,

ƒ z � z0 ƒ � ƒ z1 � z0 ƒ .z1,z0

z � z1 � z0,

z0.

��0).n :  �`  (n � 1)!zn�1

n!zn
 ` � (n � 1) ƒ z ƒ :  �

a
�

n�0

 n!zn � 1 � z � 2z2 � 6z3 � Á

z � 0z � 0
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P R O O F (a) For the series reduces to the single term 

(b) Convergence at gives by Theorem 3 in Sec. 15.1 as 
This implies boundedness in absolute value,

for every 

Multiplying and dividing by we obtain from this

Summation over n gives

(3)

Now our assumption implies that Hence
the series on the right side of (3) is a converging geometric series (see Theorem 6 in

ƒ (z � z0)>(z1 � z0) ƒ � 1.ƒ z � z0 ƒ � ƒ z1 � z0 ƒ

a
�

n�1

 ƒan(z � z0)n ƒ � Ma
�

n�1

 ` z � z0

z1 � z0
 `

n

.

ƒan(z � z0)n ƒ � `an(z1 � z0)n a z � z0

z1 � z0
 b

n

` � M `  z � z0

z1 � z0
 `

n

.

(z1 � z0)nan(z � z0)n

n � 0, 1, Á .ƒan(z1 � z0)n ƒ � M

n:  �.an(z1 � z0)n:  0z � z1

a0.z � z0



Sec. 15.1). Absolute convergence of (1) as stated in (b) now follows by the comparison
test in Sec. 15.1.

(c) If this were false, we would have convergence at a farther away from than .
This would imply convergence at by (b), a contradiction to our assumption of divergence
at 

Radius of Convergence of a Power Series
Convergence for every z (the nicest case, Example 2) or for no (the useless case,
Example 3) needs no further discussion, and we put these cases aside for a moment. We
consider the smallest circle with center that includes all the points at which a given
power series (1) converges. Let R denote its radius. The circle

(Fig. 366)

is called the circle of convergence and its radius R the radius of convergence of (1). Theorem
1 then implies convergence everywhere within that circle, that is, for all z for which

(4)

(the open disk with center and radius R). Also, since R is as small as possible, the series
(1) diverges for all z for which

(5)

No general statements can be made about the convergence of a power series (1) on the
circle of convergence itself. The series (1) may converge at some or all or none of the
points. Details will not be important to us. Hence a simple example may just give us
the idea.

ƒ z � z0 ƒ 
 R.

z0

ƒ z � z0 ƒ � R

ƒ z � z0 ƒ � R

z0

z � z0

�z2.
z2,

z2z0z3
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Divergent

z
0
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Fig. 366. Circle of convergence

E X A M P L E  4 Behavior on the Circle of Convergence

On the circle of convergence (radius in all three series),

converges everywhere since converges,

converges at (by Leibniz’s test) but diverges at 1,

diverges everywhere. �S  zn

�1S  zn>n
S  1>n2S  zn>n2

R � 1



Notations and To incorporate these two excluded cases in the present
notation, we write

if the series (1) converges for all z (as in Example 2),
if (1) converges only at the center (as in Example 3).

These are convenient notations, but nothing else.

Real Power Series. In this case in which powers, coefficients, and center are real,
formula (4) gives the convergence interval of length 2R on the real line.

Determination of the Radius of Convergence from the Coefficients. For this important
practical task we can use

T H E O R E M  2 Radius of Convergence R

Suppose that the sequence converges with limit If
then that is, the power series (1) converges for all z. If 

(hence ), then

(6) (Cauchy–Hadamard formula1).

If then (convergence only at the center 

P R O O F For (1) the ratio of the terms in the ratio test (Sec. 15.1) is

The limit is

Let thus We have convergence if thus
and divergence if By (4) and (5) this shows that 

is the convergence radius and proves (6).
If then for every z, which gives convergence for all z by the ratio test.

If then for any and all sufficiently large 
n. This implies divergence for all by the ratio test (Theorem 7, Sec. 15.1).

Formula (6) will not help if does not exist, but extensions of Theorem 2 are still
possible, as we discuss in Example 6 below.

E X A M P L E  5 Radius of Convergence

By (6) the radius of convergence of the power series is

The series converges in the open disk of radius and center 3i. �1
4 ƒ z � 3i ƒ � 1

4 

R � lim
n:�

 c (2n!)

(n!)2  ^ (2n � 2)!

((n � 1)!)2  d � lim
n:�

 c (2n!)

(2n � 2)!
 �

((n � 1)!)2

(n!)2  d � lim
n:�

  
(n � 1)2

(2n � 2)(2n � 1)
 �

1

4
 .

a
�

n�0

 
(2n)!

(n!)2
 (z � 3i)n

L*

�z � z0

z � z0ƒan�1>an ƒ ƒ z � z0 ƒ 
 1ƒan�1>an ƒ : �,
L � 0L* � 0,

1>L*ƒ z � z0 ƒ 
 1>L*.ƒ z � z0 ƒ � 1>L*,
L � L* ƒ z � z0 ƒ � 1,L* 
 0.L* � 0,

L � L* ƒ z � z0 ƒ .` an�1(z � z0)n�1

an(z � z0)n  ` � ` an�1

an
 ` ƒ z � z0 ƒ .

z0).R � 0ƒan�1>an ƒ : �,

R �
1

L* � lim
n:�

 `
 

an

an�1
 `

L* 
 0
L* � 0R � �;L* � 0,

L*.ƒan�1>an ƒ , n � 1, 2, Á ,

ƒ x � x0 ƒ � R

z � z0R � 0
R � �

R � 0.R � �
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E X A M P L E  6 Extension of Theorem 2

Find the radius of convergence R of the power series

Solution. The sequence of the ratios does not converge, so that Theorem 2 is
of no help. It can be shown that

(6*)

This still does not help here, since does not converge because for odd n, whereas
for even n we have

as

so that has the two limit points and 1. It can further be shown that

, the greatest limit point of the sequence { }.
Here , so that . Answer. The series converges for 

Summary. Power series converge in an open circular disk or some even for every z (or
some only at the center, but they are useless); for the radius of convergence, see (6) or
Example 6.

Except for the useless ones, power series have sums that are analytic functions (as we
show in the next section); this accounts for their importance in complex analysis.

�ƒ z ƒ � 1.R � 1l� � I

2
n ƒan ƒl

�
R � 1>l�(6**)

1
2 2

n ƒ an ƒ

n: �,2
n ƒan ƒ � 2

n
2 � 1>2n

 :  1

2
n ƒan ƒ � 2

n
1>2n � 1

2 (2
n ƒan ƒ )

L
�

� lim
n:�

 2
n ƒan ƒ .R � 1>L�,

1
6 , 2(2 � 1

4 ), 1>(8(2 � 1
4 )), Á

a
�

n�0

 c1 � (�1)n �
1

2n  d  zn � 3 �
1

2
 z � a2 �

1

4
 b z2 �

1

8
 z3 � a2 �

1

16
 b z4 � Á .
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1. Power series. Are and 
power series? Explain.

2. Radius of convergence. What is it? Its role? What
motivates its name? How can you find it?

3. Convergence. What are the only basically different
possibilities for the convergence of a power series?

4. On Examples 1–3. Extend them to power series in
powers of Extend Example 1 to the case
of radius of convergence 6.

5. Powers . Show that if has radius of
convergence R (assumed finite), then has
radius of convergence 

6–18 RADIUS OF CONVERGENCE
Find the center and the radius of convergence.

6. 7. a
�

n�0

 
(�1)n

(2n)!
 az �

1
2

 pb
2n

a
�

n�0

 4n(z � 1)n

1R.
Sanz2n

Sanznz2n

z � 4 � 3pi.

z2 � z3 � Á
z � z3>2 �1>z � z � z2 � Á

8. 9.

10. 11.

12. 13.

14. 15.

16. 17.

18.

19. CAS PROJECT. Radius of Convergence. Write a
program for computing R from (6), or in(6**),(6*),

a
�

n�0

 
2(�1)n

1p(2n � 1)n!
 z2n�1

a
�

n�1

 
2n

n(n � 1) z2n�1
a
�

n�0

 
(3n)!

2n(n!)3 zn

a
�

n�0

 
(2n)!

4n(n!)2
 (z � 2i)n

a
�

n�0

 
(�1)n

22n(n!)2 z2n

a
�

n�0

 16n(z � i)4n
a
�

n�0

 
(�1)nn

8n  zn

a
�

n�0

 a 2 � i
1 � 5i

b zn
 a

�

n�0

 
(z � 2i)n

nn  

a
�

n�0

 
n(n � 1)

3n  (z � i)2n
a
�

n�0

 
nn

n!
 (z � pi)n
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15.3 Functions Given by Power Series
Here, our main goal is to show that power series represent analytic functions. This fact
(Theorem 5) and the fact that power series behave nicely under addition, multiplication,
differentiation, and integration accounts for their usefulness.

To simplify the formulas in this section, we take and write

(1)

There is no loss of generality because a series in powers of with any can always
be reduced to the form (1) if we set 

Terminology and Notation. If any given power series (1) has a nonzero radius of
convergence R (thus ), its sum is a function of z, say . Then we write

(2)

We say that is represented by the power series or that it is developed in the power
series. For instance, the geometric series represents the function in the
interior of the unit circle (See Theorem 6 in Sec. 15.1.)

Uniqueness of a Power Series Representation. This is our next goal. It means that a
function cannot be represented by two different power series with the same center.
We claim that if can at all be developed in a power series with center the
development is unique. This important fact is frequently used in complex analysis (as well
as in calculus). We shall prove it in Theorem 2. The proof will follow from

T H E O R E M  1 Continuity of the Sum of a Power Series

If a function can be represented by a power series (2) with radius of convergence
, then is continuous at z � 0.f (z)R 
 0

f (z)

z0,f (z)
f (z)

ƒ z ƒ � 1.
f (z) � 1>(1 � z)

f (z)

( ƒ z ƒ � R).f (z) � a
�

n�0

 anzn � a0 � a1z � a2z2 � Á

f (z)R 
 0

ẑ � z0 � z.
z0ẑ � z0

a
�

n�0

 anzn.

z0 � 0
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this order, depending on the existence of the limits
needed. Test the program on some series of your choice
such that all three formulas (6), and will
come up.

20. TEAM PROJECT. Radius of Convergence.

(a) Understanding (6). Formula (6) for R contains
not How could you memorize

this by using a qualitative argument?

(b) Change of coefficients. What happens to R
if you (i) multiply all by ,k � 0an(0 � R � �)

ƒan�1>an ƒ .ƒ an>an�1 ƒ ,

(6**)(6*),

(ii) multiply all by (iii) replace by
? Can you think of an application of this?

(c) Understanding Example 6, which extends
Theorem 2 to nonconvergent cases of 
Do you understand the principle of “mixing” by
which Example 6 was obtained? Make up further
examples.

(d) Understanding (b) and (c) in Theorem 1. Does
there exist a power series in powers of z that converges
at and diverges at ? Give
reason.

z � 31 � 6iz � 30 � 10i

an>an�1.

1>an

ankn � 0,an



P R O O F From (2) with we have Hence by the definition of continuity we
must show that That is, we must show that for a given 
there is a such that implies Now (2) converges abso-
lutely for with any r such that by Theorem 1 in Sec. 15.2. Hence
the series

converges. Let be its sum. ( is trivial.) Then for 

and when , where is less than r and less than Hence
This proves the theorem.

From this theorem we can now readily obtain the desired uniqueness theorem (again
assuming without loss of generality):

T H E O R E M  2 Identity Theorem for Power Series. Uniqueness

Let the power series and both be
convergent for where R is positive, and let them both have the same sum
for all these z. Then the series are identical, that is, 

Hence if a function can be represented by a power series with any center 
this representation is unique.

P R O O F We proceed by induction. By assumption,

The sums of these two power series are continuous at by Theorem 1. Hence if we
consider and let on both sides, we see that the assertion is true
for Now assume that for Then on both sides we may
omit the terms that are equal and divide the result by this gives

Similarly as before by letting we conclude from this that This
completes the proof.

Operations on Power Series
Interesting in itself, this discussion will serve as a preparation for our main goal, namely,
to show that functions represented by power series are analytic.

�

am�1 � bm�1.z:  0

am�1 � am�2z � am�3z2 � Á � bm�1 � bm�2z � bm�3z2 � Á .

zm�1 (� 0);
n � 0, 1, Á , m.an � bnn � 0.

a0 � b0:z: 0ƒ z ƒ 
 0
z � 0,

( ƒ z ƒ � R).a0 � a1z � a2z2 � Á � b0 � b1z � b2z2 � Á

z0,f (z)
a0 � b0, a1 � b1, a2 � b2, Á .

ƒ z ƒ � R,
b0 � b1z � b2z2 � Áa0 � a1z � a2z2 � Á

z0 � 0

�ƒ z ƒS � dS � (P>S)S � P.
P>S.d 
 0ƒ z ƒ � dƒ z ƒS � P

ƒ  f (z) � a0 ƒ � 2 a�
n�1

 anzn 2 � ƒ z ƒ a
�

n�1

 ƒan ƒ ƒ z ƒn�1 � ƒ z ƒ a
�

n�1

 ƒan ƒ r n�1 � ƒ z ƒS

0 � ƒ z ƒ � r,S � 0S � 0

a
�

n�1

 ƒan ƒ r n�1 �
1
r  a

�

n�1

 ƒan ƒ r n

0 � r � R,ƒ z ƒ � r
ƒ  f (z) � a0 ƒ � P.ƒ z ƒ � dd 
 0

P 
 0limz:0  f (z) � f (0) � a0.
f (0) � a0.z � 0
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Termwise addition or subtraction of two power series with radii of convergence and
yields a power series with radius of convergence at least equal to the smaller of 

and Proof. Add (or subtract) the partial sums and term by term and use

Termwise multiplication of two power series

and

means the multiplication of each term of the first series by each term of the second series
and the collection of like powers of z. This gives a power series, which is called the
Cauchy product of the two series and is given by

We mention without proof that this power series converges absolutely for each z within
the smaller circle of convergence of the two given series and has the sum 
For a proof, see [D5] listed in App. 1.

Termwise differentiation and integration of power series is permissible, as we show
next. We call derived series of the power series (1) the power series obtained from (1)
by termwise differentiation, that is,

(3)

T H E O R E M  3 Termwise Differentiation of a Power Series

The derived series of a power series has the same radius of convergence as the
original series.

P R O O F This follows from (6) in Sec. 15.2 because

or, if the limit does not exist, from in Sec. 15.2 by noting that as �n: �.2
n

n: 1(6**)

lim
n:�

  
n ƒan ƒ

(n � 1) ƒan�1 ƒ
� lim

n:�
  

n
n � 1

  lim
n:�  

` an

an�1
` � lim

n:�  
` an

an�1
`

a
�

n�1

 nan z
n�1 � a1 � 2a2z � 3a3z2 � Á .

s(z) � f (z)g(z).

� a
�

n�0

 (a0bn � a1bn�1 � Á � anb0)zn.

a0b0 � (a0b1 � a1b0)z � (a0b2 � a1b1 � a2b0)z2 � Á

g(z) � a
�

m�0

 bmzm � b0 � b1z � Á

f (z) � a
�

k�0

 akzk � a0 � a1z � Á

lim (sn � s*n) � lim sn � lim s*n.
sn*snR2.

R1R2

R1
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E X A M P L E  1 Application of Theorem 3

Find the radius of convergence R of the following series by applying Theorem 3.

Solution. Differentiate the geometric series twice term by term and multiply the result by This yields 
the given series. Hence by Theorem 3.

T H E O R E M  4 Termwise Integration of Power Series

The power series

obtained by integrating the series term by term has the same
radius of convergence as the original series.

The proof is similar to that of Theorem 3.
With the help of Theorem 3, we establish the main result in this section.

Power Series Represent Analytic Functions

T H E O R E M  5 Analytic Functions. Their Derivatives

A power series with a nonzero radius of convergence R represents an analytic
function at every point interior to its circle of convergence. The derivatives of this
function are obtained by differentiating the original series term by term. All the
series thus obtained have the same radius of convergence as the original series.
Hence, by the first statement, each of them represents an analytic function.

P R O O F (a) We consider any power series (1) with positive radius of convergence R. Let be
its sum and the sum of its derived series; thus

(4) and

We show that is analytic and has the derivative in the interior of the circle of
convergence. We do this by proving that for any fixed z with and the
difference quotient approaches By termwise addition we first
have from (4)

(5)

Note that the summation starts with 2, since the constant term drops out in taking the
difference and so does the linear term when we subtract from the
difference quotient.

f1(z)f (z � ¢z) � f (z),

f (z � ¢z) � f (z)

¢z
 � f1(z) � a

�

n�2

 an c (z � ¢z)n � zn

¢z
 � nzn�1 d  .

f1(z).[ f (z � ¢z) � f (z)]>¢z
¢z: 0ƒ z ƒ � R

f1(z)f (z)

f1(z) � a
�

n�1

 nanzn�1.f (z) � a
�

n�0

 anzn

f1(z)
f (z)

a0 � a1z � a2z2 � Á

a
�

n�0

  
an

n � 1
 zn�1 � a0z �

a1

2
 z2 �

a2

3
 z3 � Á

�R � 1
z2>2.

a
�

n�2

 an
2
b zn � z2 � 3z3 � 6z4 � 10z5 � Á .
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(b) We claim that the series in (5) can be written

(6)

The somewhat technical proof of this is given in App. 4.

(c) We consider (6). The brackets contain terms, and the largest coefficient is
Since we see that for and 

the absolute value of this series (6) cannot exceed

(7)

This series with instead of is the second derived series of (2) at and
converges absolutely by Theorem 3 of this section and Theorem 1 of Sec. 15.2. Hence
our present series (7) converges. Let the sum of (7) (without the factor be 
Since (6) is the right side of (5), our present result is

Letting and noting that is arbitrary, we conclude that is analytic at
any point interior to the circle of convergence and its derivative is represented by the derived
series. From this the statements about the higher derivatives follow by induction.

Summary. The results in this section show that power series are about as nice as we
could hope for: we can differentiate and integrate them term by term (Theorems 3 and 4).
Theorem 5 accounts for the great importance of power series in complex analysis: the
sum of such a series (with a positive radius of convergence) is an analytic function and
has derivatives of all orders, which thus in turn are analytic functions. But this is only
part of the story. In the next section we show that, conversely, every given analytic function

can be represented by power series, called Taylor series and being the complex analog
of the real Taylor series of calculus.
f (z)

�

f (z)R0 (� R)¢z: 0

`  f (z � ¢z) � f (z)

¢z
 � f1(z) ` � ƒ ¢z ƒK(R0).

K (R0).ƒ ¢z ƒ )

z � R0ƒan ƒan

ƒ ¢z ƒ a
�

n�2

ƒan ƒn(n � 1)R0
n�2.

ƒ z � ¢z ƒ � R0, R0 � R,ƒ z ƒ � R0(n � 1)2 � n(n � 1),n � 1.
n � 1

� (n � 1)zn�2].

a
�

n�2

 an ¢z[(z � ¢z)n�2 � 2z(z � ¢z)n�3 � Á � (n � 2)zn�3(z � ¢z)
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1. Relation to Calculus. Material in this section gener-
alizes calculus. Give details.

2. Termwise addition. Write out the details of the proof
on termwise addition and subtraction of power series.

3. On Theorem 3. Prove that as as
claimed.

4. Cauchy product. Show that 

(a) by using the Cauchy product, (b) by differentiating
a suitable series.

a
�

n�0

(n � 1)zn(1 � z)�2 �

n: �,1
n

n: 1

5–15 RADIUS OF CONVERGENCE 
BY DIFFERENTIATION OR INTEGRATION

Find the radius of convergence in two ways: (a) directly by
the Cauchy–Hadamard formula in Sec. 15.2, and (b) from a
series of simpler terms by using Theorem 3 or Theorem 4.

5. 6.

7. 8. a
�

n�1

 
5n

n(n � 1)
 zn

a
�

n�1

 
n
3n (z � 2i)2n

a
�

n�0

 
(�1)n

2n � 1
 a z

2p
b

2n�1

a
�

n�2

 
n(n � 1)

2n  (z � 2i)n

P R O B L E M  S E T  1 5 . 3



9.

10.

11.

12.

13.

14.

15.

16–20 APPLICATIONS 
OF THE IDENTITY THEOREM 

State clearly and explicitly where and how you are using
Theorem 2.

16. Even functions. If in (2) is even (i.e.,
show that for odd n. Give

examples.
an � 0f (�z) � f (z)),

f (z)

a
�

n�2

 
4nn(n � 1)

3n  (z � i)n

a
�

n�0

 an � m

m
b zn

a
�

n�0

 c an � k

k
b d

�1

 zn�k

a
�

n�1

 
2n(2n � 1)

nn  z2n�2

a
�

n�1

 
3nn(n � 1)

7n
 

 (z � 2)2n

a
�

n�k

 an
k
b a z

2
 b

n

a
�

n�1

 
(�2)n

n(n � 1)(n � 2)
 z2n
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17. Odd function. If in (2) is odd (i.e.,
show that for even n. Give examples.

18. Binomial coefficients. Using 
obtain the basic relation

19. Find applications of Theorem 2 in differential equa-
tions and elsewhere.

20. TEAM PROJECT. Fibonacci numbers.2 (a) The
Fibonacci numbers are recursively defined by

if 
Find the limit of the sequence 

(b) Fibonacci’s rabbit problem. Compute a list of
Show that is the number

of pairs of rabbits after 12 months if initially there
is 1 pair and each pair generates 1 pair per month,
beginning in the second month of existence (no deaths
occurring).

(c) Generating function. Show that the generating
function of the Fibonacci numbers is 

that is, if a power series (1) represents
this its coefficients must be the Fibonacci numbers
and conversely. Hint. Start from 
and use Theorem 2.

f (z)(1 � z � z2) � 1
f (z),

1>(1 � z � z2);
f (z) �

a12 � 233a1, Á , a12.

(an�1>an).
n � 1, 2, Á .an�1 � an � an�1a0 � a1 � 1,

a

r

n�0

ap
n

 b a q

r � n
 b � ap � q

r
 b .

(1 � z)p�q,
(1 � z)p(1 � z)q �

an � 0
�f (z)),f (�z) �f (z)

15.4 Taylor and Maclaurin Series
The Taylor series3 of a function the complex analog of the real Taylor series is

(1) where

or, by (1), Sec. 14.4,

(2)

In (2) we integrate counterclockwise around a simple closed path C that contains in its
interior and is such that is analytic in a domain containing C and every point inside C.

A Maclaurin series3 is a Taylor series with center z0 � 0.
f (z)

z0

an �
1

2pi
 �

C

  
f (z*)

(z* � z0)n�1 dz*.

an �
1
n!

  f (n)(z0)f (z) � a
�

n�1

 an(z � z0)n

f (z),

2LEONARDO OF PISA, called FIBONACCI (� son of Bonaccio), about 1180–1250, Italian mathematician,
credited with the first renaissance of mathematics on Christian soil.

3BROOK TAYLOR (1685–1731), English mathematician who introduced real Taylor series. COLIN
MACLAURIN (1698–1746), Scots mathematician, professor at Edinburgh.



The remainder of the Taylor series (1) after the term is

(3)

(proof below). Writing out the corresponding partial sum of (1), we thus have

(4)

This is called Taylor’s formula with remainder.

We see that Taylor series are power series. From the last section we know that power
series represent analytic functions. And we now show that every analytic function can be
represented by power series, namely, by Taylor series (with various centers). This makes
Taylor series very important in complex analysis. Indeed, they are more fundamental in
complex analysis than their real counterparts are in calculus.

T H E O R E M  1 Taylor’s Theorem

Let be analytic in a domain D, and let be any point in D. Then there
exists precisely one Taylor series (1) with center that represents This
representation is valid in the largest open disk with center in which is analytic.
The remainders of (1) can be represented in the form (3). The coefficients
satisfy the inequality

(5)

where M is the maximum of on a circle in D whose interior is
also in D.

P R O O F The key tool is Cauchy’s integral formula in Sec. 14.3; writing z and instead of and
z (so that is the variable of integration), we have

(6)

z lies inside C, for which we take a circle of radius r with center and interior in D
(Fig. 367). We develop in (6) in powers of By a standard algebraic
manipulation (worth remembering!) we first have

(7)
1

z* � z
�

1
z* � z0 � (z � z0)

�
1

(z* � z0) a1 �
z � z0

z* � z0
b

 .

z � z0.1>(z* � z)
z0

f (z) �
1

2pi
 �

C

  
f (z*)

z* � z
 dz*.

z*
z0z*

ƒ z � z0 ƒ � rƒ  f (z) ƒ

ƒan ƒ �
M

r n

Rn(z)
f (z)z0

f (z).z0

z � z0f (z)

�
(z � z0)n

n!
  f (n)(z0) � Rn(z).

f (z) � f (z0) �
z � z0

1!
  f r(z0) �

(z � z0)2

2!
  f s(z0) � Á

Rn(z) �
(z � z0)n�1

2pi
 �

C

  
f (z*)

(z* � z0)n�1(z* � z)
 dz*

an(z � z0)n
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For later use we note that since is on C while z is inside C, we have

(Fig. 367).

To (7) we now apply the sum formula for a finite geometric sum

which we use in the form (take the last term to the other side and interchange sides)

(8)

Applying this with to the right side of (7), we get

We insert this into (6). Powers of do not depend on the variable of integration 
so that we may take them out from under the integral sign. This yields

with given by (3). The integrals are those in (2) related to the derivatives, so that
we have proved the Taylor formula (4).

Since analytic functions have derivatives of all orders, we can take n in (4) as large as
we please. If we let n approach infinity, we obtain (1). Clearly, (1) will converge and
represent if and only if

(9) lim
n:�   

Rn(z) � 0.

f (z)

Rn(z)

 Á �
(z � z0)n

2pi
 �

C

  
f (z*)

(z* � z0)n�1 dz* � Rn(z)

 f (z) �
1

2pi
  �

C

  
f (z*)

z* � z0
 dz* �

z � z0

2pi
  �

C

  
f (z*)

(z* � z0)2 dz* � Á

z*,z � z0

 �
1

z* � z
 a z � z0

z* � z0
 b

n�1

.

 
1

z* � z
�

1

z* � z0
 c1 �

z � z0

z* � z0
� a z � z0

z* � z0
 b2 � Á � a z � z0

z* � z0
 bn d

q � (z � z0)>(z* � z0)

1
1 � q

� 1 � q � Á � qn �
qn�1

1 � q
 .

(q � 1),1 � q � Á � qn �
1 � qn�1

1 � q
�

1
1 � q

�
qn�1

1 � q
(8*)

` z � z0

z* � z0
` � 1.(7*)

z*
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y

x

z
0

z

r
C

z*

Fig. 367. Cauchy formula (6)



We prove (9) as follows. Since lies on C, whereas z lies inside C (Fig. 367), we have
Since is analytic inside and on C, it is bounded, and so is the function
say,

for all on C. Also, C has the radius and the length Hence by the
ML-inequality (Sec. 14.1) we obtain from (3)

(10)

Now because z lies inside C. Thus so that the right side
approaches 0 as This proves that the Taylor series converges and has the sum 
Uniqueness follows from Theorem 2 in the last section. Finally, (5) follows from in
(1) and the Cauchy inequality in Sec. 14.4. This proves Taylor’s theorem.

Accuracy of Approximation. We can achieve any preassinged accuracy in approxi-
mating by a partial sum of (1) by choosing n large enough. This is the practical use
of formula (9).

Singularity, Radius of Convergence. On the circle of convergence of (1) there is at
least one singular point of that is, a point at which is not analytic
(but such that every disk with center c contains points at which is analytic). We
also say that is singular at c or has a singularity at c. Hence the radius of con-
vergence R of (1) is usually equal to the distance from to the nearest singular point
of 

(Sometimes R can be greater than that distance: Ln z is singular on the negative real
axis, whose distance from is 1, but the Taylor series of Ln z with center

has radius of convergence 

Power Series as Taylor Series
Taylor series are power series—of course! Conversely, we have

T H E O R E M  2 Relation to the Previous Section

A power series with a nonzero radius of convergence is the Taylor series of its sum.

P R O O F Given the power series

f (z) � a0 � a1(z � z0) � a2(z � z0)2 � a3(z � z0)3 � Á .

12.)z0 � �1 � i
z0 � �1 � i

f (z).
z0

f (z)
f (z)

f (z)z � cf (z),

f (z)

�

an

f (z).n: �.
ƒ z � z0 ƒ >r � 1,ƒ z � z0 ƒ � r

 �
ƒ z � z0 ƒn�1

2p  M
� 1

r n�1
 2pr � M

� ` z � z0

r
`
n�1

.

 ƒRn ƒ �
ƒ z � z0 ƒn�1

2p
  ` �

C

 
f (z*)

(z* � z0)n�1(z* � z)
 dz* `

2pr.r � ƒ z* � z0 ƒz*

` f (z*)

z* � z
` � M

�

f (z*)>(z* � z),
f (z)ƒ z* � z ƒ 
 0.

z*
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Then By Theorem 5 in Sec. 15.3 we obtain

thus

thus

and in general With these coefficients the given series becomes the Taylor
series of with center 

Comparison with Real Functions. One surprising property of complex analytic
functions is that they have derivatives of all orders, and now we have discovered the other
surprising property that they can always be represented by power series of the form (1).
This is not true in general for real functions; there are real functions that have derivatives
of all orders but cannot be represented by a power series. (Example: 
if and this function cannot be represented by a Maclaurin series in an
open disk with center 0 because all its derivatives at 0 are zero.)

Important Special Taylor Series
These are as in calculus, with x replaced by complex z. Can you see why? (Answer. The
coefficient formulas are the same.)

E X A M P L E  1 Geometric Series

Let Then we have Hence the Maclaurin expansion of
is the geometric series

(11)

is singular at this point lies on the circle of convergence.

E X A M P L E  2 Exponential Function

We know that the exponential function (Sec. 13.5) is analytic for all z, and Hence from (1) with
we obtain the Maclaurin series

(12)

This series is also obtained if we replace x in the familiar Maclaurin series of by z.
Furthermore, by setting in (12) and separating the series into the real and imaginary parts (see Theorem

2, Sec. 15.1) we obtain

Since the series on the right are the familiar Maclaurin series of the real functions and this shows
that we have rediscovered the Euler formula

(13)

Indeed, one may use (12) for defining and derive from (12) the basic properties of For instance, the 
differentiation formula follows readily from (12) by termwise differentiation. �(ez)r � ez

ez.ez

eiy � cos y � i sin y.

sin y,cos y

eiy � a
�

n�0

 
(iy)n

n!
� a

�

k�0

 (�1)k 
y2k

(2k)!
� ia

�

k�0

 (�1)k 
y2k�1

(2k � 1)!
 .

z � iy
ex

ez � a
�

n�0

  
zn

n!
� 1 � z �

z2

2!
� Á .

z0 � 0
(ez)r � ez.ez

�z � 1;f (z)

( ƒ z ƒ � 1).
1

1 � z
� a

�

n�0

 zn � 1 � z � z2 � Á

1>(1 � z)
f (n)(z) � n!>(1 � z)n�1, f (n)(0) � n!.f (z) � 1>(1 � z).

f (0) � 0;x � 0
f (x) � exp (�1>x2)

�z0.f (z)
f (n)(z0) � n!an.

f s(z0) � 2!a2 f s(z) � 2a2 � 3 # 2(z � z0) � Á ,

f r(z0) � a1 f r(z) � a1 � 2a2(z � z0) � 3a3(z � z0)2 � Á ,

f (z0) � a0.
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E X A M P L E  3 Trigonometric and Hyperbolic Functions

By substituting (12) into (1) of Sec. 13.6 we obtain

(14)

When these are the familiar Maclaurin series of the real functions and Similarly, by substituting
(12) into (11), Sec. 13.6, we obtain

(15)

E X A M P L E  4 Logarithm

From (1) it follows that

(16)

Replacing z by and multiplying both sides by we get

(17)

By adding both series we obtain

(18)

Practical Methods
The following examples show ways of obtaining Taylor series more quickly than by the
use of the coefficient formulas. Regardless of the method used, the result will be the same.
This follows from the uniqueness (see Theorem 1).

E X A M P L E  5 Substitution

Find the Maclaurin series of 

Solution. By substituting for z in (11) we obtain

(19) �( ƒ z ƒ � 1).
1

1 � z2
�

1

1 � (�z2)
� a

�

n�0

 (�z2)n � a
�

n�0

 (�1)nz2n � 1 � z2 � z4 � z6 � Á

�z2

f (z) � 1>(1 � z2).

�( ƒ z ƒ � 1).Ln 
1 � z

1 � z
� 2 az �

z3

3
�

z5

5
� Á b

( ƒ z ƒ � 1).�Ln (1 � z) � Ln 
1

1 � z
� z �

z2

2
�

z3

3
� Á

�1,�z

( ƒ z ƒ � 1).Ln (1 � z) � z �
z2

2
�

z3

3
� � Á

�sinh z � a
�

n�0

  
z2n�1

(2n � 1)!
� z �

z3

3!
�

z5

5!
� Á .

cosh z � a
�

n�0

  
z2n

(2n)!
� 1 �

z2

2!
�

z4

4!
� Á

sin x.cos xz � x

 sin z � a
�

n�0

 (�1)n 
z2n�1

(2n � 1)!
� z �

z3

3!
�

z5

5!
� � Á .

 cos z � a
�

n�0

 (�1)n 
z2n

(2n)!
� 1 �

z2

2!
�

z4

4!
� � Á
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E X A M P L E  6 Integration

Find the Maclaurin series of 

Solution. We have Integrating (19) term by term and using we get

this series represents the principal value of defined as that value for which

E X A M P L E  7 Development by Using the Geometric Series

Develop in powers of where 

Solution. This was done in the proof of Theorem 1, where The beginning was simple algebra and
then the use of (11) with z replaced by 

This series converges for

that is,

E X A M P L E  8 Binomial Series, Reduction by Partial Fractions

Find the Taylor series of the following function with center 

Solution. We develop in partial fractions and the first fraction in a binomial series

(20)

with and the second fraction in a geometric series, and then add the two series term by term. This gives

We see that the first series converges for and the second for This had to be expected
because is singular at and at 3, and these points have distance 3 and 2, respectively, 
from the center Hence the whole series converges for �ƒ z � 1 ƒ � 2.z0 � 1.

2>(z � 3)�21>(z � 2)2
ƒ z � 1 ƒ � 2.ƒ z � 1 ƒ � 3

 � � 

8

9
�

31

54
 (z � 1) �

23

108
 (z � 1)2 �

275

1944
 (z � 1)3 � Á .

 �
1

9
 a

�

n�0

 a�2

n
 b az � 1

3
 b

n

� a
�

n�0

 az � 1

2
 b

n

� a
�

n�0

 c (�1)n(n � 1)

3n�2
�

1

2n
 d  (z � 1)n

 f (z) �
1

(z � 2)2 �
2

z � 3
�

1

[3 � (z � 1)]2 �
2

2 � (z � 1)
�

1

9
 a 1

[1 � 1
3 (z � 1)]2

 b �
1

1 � 1
2 (z � 1)

 

m � 2

� 1 � mz �
m(m � 1)

2!
 z2 �

m(m � 1)(m � 2)

3!
 z3 � Á

1

(1 � z)m
� (1 � z)�m � a

�

n�0

 a�m

n
b zn

f (z)

f (z) �
2z2 � 9z � 5

z3 � z2 � 8z � 12

z0 � 1.

�ƒ z � z0 ƒ � ƒ c � z0 ƒ .`  z � z0 

c � z0
` � 1,

 �
1

c � z0
 a1 �

z � z0

c � z0
� a z � z0

c � z0
 b2 � Á b

 

.

 
1

c � z
�

1
c � z0 � (z � z0)

 �
1

(c � z0) a1 �
z � z0

c � z0
b

�
1

c � z0
 a

�

n�0

 a z � z0

c � z0
 bn

(z � z0)>(c � z0):
c � z*.

c � z0 � 0.z � z0,1>(c � z)

�ƒ u ƒ � p>2.
w � u � iv � arctan z

( ƒ z ƒ � 1);arctan z � a
�

n�0

  
(�1)n

2n � 1
 z2n�1 � z �

z3

3
�

z5

5
� � Á

f (0) � 0f r(z) � 1>(1 � z2).

f (z) � arctan z.
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1. Calculus. Which of the series in this section have you
discussed in calculus? What is new?

2. On Examples 5 and 6. Give all the details in the
derivation of the series in those examples.

3–10 MACLAURIN SERIES 
Find the Maclaurin series and its radius of convergence.

3. 4.

5. 6.

7. 8.

9. 10.

11–14 HIGHER TRANSCENDENTAL
FUNCTIONS

Find the Maclaurin series by termwise integrating the
integrand. (The integrals cannot be evaluated by the usual
methods of calculus. They define the error function erf z,
sine integral and Fresnel integrals4 and 
which occur in statistics, heat conduction, optics, and other
applications. These are special so-called higher transcen-
dental functions.)

11. 12.

13. 14.

15. CAS Project. sec, tan. (a) Euler numbers. The
Maclaurin series

(21)

defines the Euler numbers Show that 
Write a program that

computes the from the coefficient formula in (1)
or extracts them as a list from the series. (For tables
see Ref. [GenRef1], p. 810, listed in App. 1.)

(b) Bernoulli numbers. The Maclaurin series

(22)
z

ez � 1
� 1 � B1z �

B2

2!
 z2 �

B3

3!
 z3 � Á

E2n

E6 � �61.E4 � 5,E2 � �1,
E0 � 1,E2n.

sec z � E0 �
E2

2!
 z2 �

E4

4!
 z4 � � Á

Si(z) � �
z

0

 
sin t

t
 dterf z �

2

1p
 �

z

0

 e�t2

 dt

C(z) � �
z

0

 cos t 2 dtS(z) � �
z

0

 sin t 2 dt

C(z),S(z)Si(z),

exp (z2)�
z

0

exp (�t 2) dt�
z

0

 exp a�t 2

2
b dt

sin2 zcos2 12 z

1
1 � 3iz

1

2 � z4

z � 2

1 � z2
sin 2z2

defines the Bernoulli numbers Using undetermined
coefficients, show that

(23)

Write a program for computing 

(c) Tangent. Using (1), (2), Sec. 13.6, and (22), show
that tan z has the following Maclaurin series and
calculate from it a table of 

(24)

16. Inverse sine. Developing and integrating,
show that

Show that this series represents the principal value of
arcsin z (defined in Team Project 30, Sec. 13.7).

17. TEAM PROJECT. Properties from Maclaurin
Series. Clearly, from series we can compute function
values. In this project we show that properties of
functions can often be discovered from their Taylor or
Maclaurin series. Using suitable series, prove the
following.

(a) The formulas for the derivatives of 
and 

(b)

(c) for all pure imaginary 

18–25 TAYLOR SERIES 
Find the Taylor series with center and its radius of
convergence.

18. 19.

20. 21.

22.

23. 24.

25. sinh (2z � i), z0 � i>2
ez(z�2), z0 � 11>(z � i)2, z0 � i

cosh (z � pi), z0 � pi

sin z, z0 � p>2cos2 z, z0 � p>2
1>(1 � z), z0 � i1>z, z0 � i

z0

z � iy � 0sin z � 0

1
2 (eiz � e�iz) � cos z

Ln (1 � z)sinh z.cosh z,
sin z,cos z,ez,

� a1 # 3 # 5
2 # 4 # 6

 b z
7

7
� Á ( ƒ z ƒ � 1).

 arcsin z � z � a1
2

 b z
3

3
� a1 # 3

2 # 4
b z

5

5

1>21 � z2

 � a
�

n�1

 (�1)n�1 
22n(22n � 1)

(2n)!
 B2n z

2n�1.

 tan z �
2i

e2iz � 1
�

4i

e4iz � 1
� i

B0, Á , B20:

Bn.

 B4 � � 
1

30 , B5 � 0, B6 � 1
42 , Á .

 B1 � � 
1
2 , B2 � 1

6 , B3 � 0,

Bn.
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4AUGUSTIN FRESNEL (1788–1827), French physicist and engineer, known for his work in optics.



15.5 Uniform Convergence. Optional
We know that power series are absolutely convergent (Sec. 15.2, Theorem 1) and, as
another basic property, we now show that they are uniformly convergent. Since uniform
convergence is of general importance, for instance, in connection with termwise integration
of series, we shall discuss it quite thoroughly.

To define uniform convergence, we consider a series whose terms are any complex
functions 

(1)

(This includes power series as a special case in which We assume
that the series (1) converges for all z in some region G. We call its sum and its nth
partial sum thus

Convergence in G means the following. If we pick a in G, then, by the definition
of convergence at for given we can find an such that

for all 

If we pick a in G, keeping as before, we can find an such that

for all 

and so on. Hence, given an to each z in G there corresponds a number This
number tells us how many terms we need (what we need) at a z to make 
smaller than Thus this number measures the speed of convergence.

Small means rapid convergence, large means slow convergence at the point
z considered. Now, if we can find an larger than all these for all z in G, we
say that the convergence of the series (1) in G is uniform. Hence this basic concept is
defined as follows.

D E F I N I T I O N Uniform Convergence

A series (1) with sum is called uniformly convergent in a region G if for every
we can find an not depending on z, such that

for all and all z in G.

Uniformity of convergence is thus a property that always refers to an infinite set in
the z-plane, that is, a set consisting of infinitely many points.

E X A M P L E  1 Geometric Series

Show that the geometric series is (a) uniformly convergent in any closed disk 
(b) not uniformly convergent in its whole disk of convergence ƒ z ƒ � 1.

ƒ z ƒ � r � 1,1 � z � z2 � Á

n 
 N (P)ƒ s (z) � sn(z) ƒ � P

N � N (P),P 
 0
s (z)

Nz(P)N (P)
Nz(P)Nz(P)

Nz(P)P.
ƒ s (z) � sn(z) ƒsn

Nz(P).P 
 0,

n 
 N2(P),ƒ s (z2) � sn(z2) ƒ � P

N2(P)Pz2

n 
 N1(P).ƒ s (z1) � sn(z1) ƒ � P

N1(P)P 
 0z1,
z � z1

sn(z) � f0(z) � f1(z) � Á � fn(z).

sn(z);
s (z)

fm(z) � am(z � z0)m.)

a
�

m�0

 fm(z) � f0(z) � f1(z) � f2(z) � Á .

f0(z), f1(z), Á
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Solution. (a) For z in that closed disk we have (sketch it). This implies that
Hence (remember (8) in Sec. 15.4 with 

Since we can make the right side as small as we want by choosing n large enough, and since the right
side does not depend on z (in the closed disk considered), this means that the convergence is uniform.

(b) For given real K (no matter how large) and n we can always find a z in the disk such that

simply by taking z close enough to 1. Hence no single will suffice to make smaller than a
given throughout the whole disk. By definition, this shows that the convergence of the geometric series
in is not uniform.

This example suggests that for a power series, the uniformity of convergence may at most
be disturbed near the circle of convergence. This is true:

T H E O R E M  1 Uniform Convergence of Power Series

A power series

(2)

with a nonzero radius of convergence R is uniformly convergent in every circular
disk of radius 

P R O O F For and any positive integers n and p we have

(3)

Now (2) converges absolutely if (by Theorem 1 in Sec. 15.2). Hence
it follows from the Cauchy convergence principle (Sec. 15.1) that, an being given,
we can find an such that

for and

From this and (3) we obtain

for all z in the disk every and every Since is
independent of z, this shows uniform convergence, and the theorem is proved.

Thus we have established uniform convergence of power series, the basic concern of this
section. We now shift from power series to arbitary series of variable terms and examine
uniform convergence in this more general setting. This will give a deeper understanding
of uniform convergence.

�

N (P)p � 1, 2, Á .n 
 N (P),ƒ z � z0 ƒ � r,

ƒan�1(z � z0)n�1 � Á � an�p(z � z0)n�p ƒ � P

p � 1, 2, Á .n 
 N (P)ƒan�1 ƒ r n�1 � Á � ƒan�p ƒ r n�p � P

N (P)
P 
 0

ƒ z � z0 ƒ � r � R

ƒan�1(z � z0)n�1 � Á � an�p(z � z0)n�p ƒ � ƒan�1 ƒ r n�1 � Á � ƒan�p ƒ r n�p.

ƒ z � z0 ƒ � r

r � R.ƒ z � z0 ƒ � r

a
�

m�0

 am(z � z0)m

�ƒ z ƒ � 1
P 
 0

ƒ s (z) � sn(z) ƒN (P)

` z
n�1

1 � z
 ` �

ƒ z ƒn�1

ƒ1 � z ƒ
 
 K,

ƒ z ƒ � 1

r � 1,

ƒ s(z) � sn(z) ƒ � 2  a�
m�n�1

 zm 2 � 2  zn�1

1 � z
  2 �

r n�1

1 � r
 .

q � z)1> ƒ 1 � z ƒ � 1>(1 � r).
ƒ1 � z ƒ 	 1 � r
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Properties of Uniformly Convergent Series
Uniform convergence derives its main importance from two facts:

1. If a series of continuous terms is uniformly convergent, its sum is also continuous
(Theorem 2, below).

2. Under the same assumptions, termwise integration is permissible (Theorem 3).

This raises two questions:

1. How can a converging series of continuous terms manage to have a discontinuous
sum? (Example 2)

2. How can something go wrong in termwise integration? (Example 3)

Another natural question is:

3. What is the relation between absolute convergence and uniform convergence? The
surprising answer: none. (Example 5)

These are the ideas we shall discuss.

If we add finitely many continuous functions, we get a continuous function as their sum.
Example 2 will show that this is no longer true for an infinite series, even if it converges
absolutely. However, if it converges uniformly, this cannot happen, as follows.

T H E O R E M  2 Continuity of the Sum

Let the series

be uniformly convergent in a region G. Let be its sum. Then if each term 
is continuous at a point in G, the function is continuous at 

P R O O F Let be the nth partial sum of the series and the corresponding remainder:

Since the series converges uniformly, for a given we can find an such that

for all z in G.

Since is a sum of finitely many functions that are continuous at this sum is
continuous at Therefore, we can find a such that

for all z in G for which 

Using and the triangle inequality (Sec. 13.2), for these z we thus obtain

This implies that is continuous at and the theorem is proved. �z1,F (z)

 � ƒ sN(z) � sN(z1) ƒ � ƒRN(z) ƒ � ƒRN(z1) ƒ �
P
3

�
P
3

�
P
3

� P.

 ƒF(z) � F (z1) ƒ � ƒ sN(z) � RN(z) � [sN(z1) � RN(z1)] ƒ

F � sN � RN

ƒ z � z1 ƒ � d.ƒ sN(z) � sN(z1) ƒ �
P
3

d 
 0z1.
z1,sN(z)

ƒRN(z) ƒ �
P
3

 

N � N (P)P 
 0

sn � f0 � f1 � Á � fn,    Rn � fn�1 � fn�2 � Á .

Rn(z)sn(z)

z1.F (z)z1

fm(z)F (z)

a
�

m�0

 fm(z) � f0(z) � f1(z) � Á
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E X A M P L E  2 Series of Continuous Terms with a Discontinuous Sum

Consider the series

(x real).

This is a geometric series with times a factor . Its nth partial sum is

We now use the trick by which one finds the sum of a geometric series, namely, we multiply by

Adding this to the previous formula, simplifying on the left, and canceling most terms on the right, we obtain

thus

The exciting Fig. 368 “explains” what is going on. We see that if , the sum is

but for we have for all n, hence So we have the surprising fact that the sum
is discontinuous (at although all the terms are continuous and the series converges even absolutely (its
terms are nonnegative, thus equal to their absolute value!).

Theorem 2 now tells us that the convergence cannot be uniform in an interval containing We can also
verify this directly. Indeed, for the remainder has the absolute value

and we see that for a given we cannot find an N depending only on such that for all 
and all x, say, in the interval �0 � x � 1.

n 
 N(P)ƒRn ƒ � PPP (�1)

ƒRn(x) ƒ � ƒ s (x) � sn(x) ƒ �
1

(1 � x2)n
 

x � 0
x � 0.

x � 0),
s (0) � 0.sn(0) � 1 � 1 � 0x � 0

s (x) � lim
n:�

 sn(x) � 1 � x2,

x � 0

sn(x) � 1 � x2 �
1

(1 � x2)n
 .

x2

1 � x2
 sn(x) � x2 c1 �

1

(1 � x2)n�1
 d  ,

� 

1

1 � x2
 sn(x) � �x2 c 1

1 � x2
� Á �

1

(1 � x2)n
�

1

(1 � x2)n�1
 d  .

�q � �1>(1 � x2),
sn(x)

sn(x) � x2 c1 �
1

1 � x2
�

1

(1 � x2)2
� Á �

1

(1 � x2)n
 d  .

x2q � 1>(1 � x2)

x2 �
x2

1 � x2
�

x2

(1 � x2)2
�

x2

(1 � x2)3
� Á
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Fig. 368. Partial sums in Example 2

Termwise Integration
This is our second topic in connection with uniform convergence, and we begin with an
example to become aware of the danger of just blindly integrating term-by-term.



E X A M P L E  3 Series for Which Termwise Integration Is Not Permissible

Let and consider the series

where

in the interval The nth partial sum is

Hence the series has the sum . From this we obtain

On the other hand, by integrating term by term and using we have

Now and the expression on the right becomes

but not 0. This shows that the series under consideration cannot be integrated term by term from to

The series in Example 3 is not uniformly convergent in the interval of integration, and
we shall now prove that in the case of a uniformly convergent series of continuous
functions we may integrate term by term.

T H E O R E M  3 Termwise Integration

Let

be a uniformly convergent series of continuous functions in a region G. Let C be
any path in G. Then the series

(4)

is convergent and has the sum �
C

 F (z) dz.

a
�

m�0

 �
C

 fm(z) dz � �
C

 f0(z) dz � �
C

 f1(z) dz � Á

F (z) � a
�

m�0

 fm(z) � f0(z) � f1(z) � Á

�x � 1.
x � 0

lim
n:�

 �
1

0

 un(x) dx � lim
n:�

 �
1

0

 nxe�nx2

 dx � lim
n:�

 
1

2
 (1 � e�n) �

1

2
 ,

sn � un

a
�

m�1

 �
1

0

 fm(x) dx � lim
n:�

  a
n

m�1

 �
1

0

 fm(x) dx � lim
n:�

 �
1

0

 sn(x) dx.

f1 � f2 � Á � fn � sn,

�
1

0

 F (x) dx � 0.

F (x) � lim
n:�

 sn(x) � lim
n:�

 un(x) � 0 (0 � x � 1)

sn � u1 � u0 � u2 � u1 � Á � un � un�1 � un � u0 � un.

0 � x � 1.

fm(x) � um(x) � um�1(x)a
�

m�0

 fm(x)

um(x) � mxe�mx2
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P R O O F From Theorem 2 it follows that is continuous. Let be the nth partial sum of the
given series and the corresponding remainder. Then and by integration,

�
C

 F (z) dz � �
C

 sn(z) dz � �
C

 Rn(z) dz.

F � sn � RnRn(z)
sn(z)F (z)



Let L be the length of C. Since the given series converges uniformly, for every given
we can find a number N such that for all and all z in G. By

applying the ML-inequality (Sec. 14.1) we thus obtain

for all 

Since this means that

for all 

Hence, the series (4) converges and has the sum indicated in the theorem.

Theorems 2 and 3 characterize the two most important properties of uniformly convergent
series. Also, since differentiation and integration are inverse processes, Theorem 3 implies

T H E O R E M  4 Termwise Differentiation

Let the series be convergent in a region G and let 
be its sum. Suppose that the series converges uniformly
in G and its terms are continuous in G. Then

for all z in G.

Test for Uniform Convergence
Uniform convergence is usually proved by the following comparison test.

T H E O R E M  5 Weierstrass5 M-Test for Uniform Convergence

Consider a series of the form (1) in a region G of the z-plane. Suppose that one can
find a convergent series of constant terms,

(5)

such that for all z in G and every Then (1) is uniformly
convergent in G.

The simple proof is left to the student (Team Project 18).

m � 0, 1, Á .ƒ  fm(z) ƒ � Mm

M0 � M1 � M2 � Á ,

Fr(z) � f0r(z) � f1r(z) � f2r(z) � Á

f0r(z) � f1r(z) � f2r(z) � Á
F (z)f0(z) � f1(z) � f2(z) � Á

�

n 
 N.` �
C

 F (z) dz � �
C

 sn(z) dz ` � P

Rn � F � sn,

n 
 N.` �
C

 Rn(z) dz ` �
P
L

 L � P

n 
 NƒRn(z) ƒ � P>LP 
 0
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5KARL WEIERSTRASS (1815–1897), great German mathematician, who developed complex analysis based
on the concept of power series and residue integration. (See footnote in Section 13.4.) He put analysis on a
sound theoretical footing. His mathematical rigor is so legendary that one speaks Weierstrassian rigor. (See
paper by Birkhoff and Kreyszig, 1984 in footnote in Sec. 5.5; Kreyszig, E., On the Calculus, of Variations and
Its Major Influences on the Mathematics of the First Half of Our Century. Part II, American Mathematical
Monthly (1994), 101, No. 9, pp. 902–908). Weierstrass also made contributions to the calculus of variations,
approximation theory, and differential geometry. He obtained the concept of uniform convergence in 1841
(published 1894, sic!); the first publication on the concept was by G. G. STOKES (see Sec 10.9) in 1847. 



E X A M P L E  4 Weierstrass M-Test

Does the following series converge uniformly in the disk ?

Solution. Uniform convergence follows by the Weierstrass M-test and the convergence of (see
Sec. 15.1, in the proof of Theorem 8) because

No Relation Between Absolute 
and Uniform Convergence
We finally show the surprising fact that there are series that converge absolutely but not
uniformly, and others that converge uniformly but not absolutely, so that there is no relation
between the two concepts.

E X A M P L E  5 No Relation Between Absolute and Uniform Convergence

The series in Example 2 converges absolutely but not uniformly, as we have shown. On the other hand, the series

(x real)

converges uniformly on the whole real line but not absolutely.
Proof. By the familiar Leibniz test of calculus (see App. A3.3) the remainder does not exceed its first

term in absolute value, since we have a series of alternating terms whose absolute values form a monotone
decreasing sequence with limit zero. Hence given for all x we have

if 

This proves uniform convergence, since does not depend on x.
The convergence is not absolute because for any fixed x we have

where k is a suitable constant, and diverges. �kS1>m

 

k
m

 ` (�1)m�1

x2 � m
 ` �

1

x2 � m

N (P)

n 
 N(P) 	
1

P
 .ƒRn(x) ƒ �

1

x2 � n � 1
�

1

n
� P

P 
 0,

Rn

a
�

m�1

 
(�1)m�1

x2 � m
�

1

x2 � 1
�

1

x2 � 2
�

1

x2 � 3
� � Á

� �
2

m2
 .

 ` zm � 1

m2 � cosh m ƒ z ƒ
 ` �

ƒ z ƒm � 1

m2
 

S1>m2

a
�

m�1

 
zm � 1

m2 � cosh m ƒ z ƒ
 .

ƒ z ƒ � 1
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1. CAS EXPERIMENT. Graphs of Partial Sums. (a)
Fig. 368. Produce this exciting figure using your CAS.
Add further curves, say, those of etc. on the
same screen.

s256, s1024,

(b) Power series. Study the nonuniformity of con-
vergence experimentally by graphing partial sums near
the endpoints of the convergence interval for real
z � x.

P R O B L E M  S E T  1 5 . 5



2–9 POWER SERIES
Where does the power series converge uniformly? Give
reason.

2.

3.

4.

5.

6.

7.

8.

9.

10–17 UNIFORM CONVERGENCE
Prove that the series converges uniformly in the indicated
region.

10.

11.

12.

13.

14.

15.

16.

17.

18. TEAM PROJECT. Uniform Convergence.

(a) Weierstrass M-test. Give a proof.

a
�

n�1

 
pn

n4
 z2n, ƒ z ƒ � 0.56

a
�

n�1

 
tanhn ƒ z ƒ
n(n � 1)

 , all z

a
�

n�0

 
(n!)2

(2n!)
 zn, ƒ z ƒ � 3

a
�

n�0

 
zn

ƒ z ƒ 2n � 1
 , 2 � ƒ z ƒ � 10

a
�

n�1

 
sinn ƒ z ƒ

n2
 , all z

a
�

n�1

 
zn

n3
  cosh  n ƒ z ƒ

 , ƒ z ƒ � 1

a
�

n�1

 
zn

n2
 , ƒ z ƒ � 1

a
�

n�0

 
z2n

2n!
 , ƒ z ƒ � 1020

a
�

n�1

 
(�1)n

2nn2
 (z � 2i)n

a
�

n�1

 
3n

n(n � 1)
 (z � 1)2n

a
�

n�1

 
n!

n2
 az �

1
2
 ib

a
�

n�0

 2n(tanh n2) z2n

a
�

n�2

 an
2
 b (4z � 2i)n

a
�

n�0

 
3n(1 � i)n

n!
 (z � i)n

a
�

n�0

 
1

3n  (z � i)2n

a
�

n�0

 a n � 2
7n � 3

 bnzn
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(b) Termwise differentiation. Derive Theorem 4
from Theorem 3.

(c) Subregions. Prove that uniform convergence of a
series in a region G implies uniform convergence in
any portion of G. Is the converse true?

(d) Example 2. Find the precise region of convergence
of the series in Example 2 with x replaced by a complex
variable z.

(e) Figure 369. Show that 
if and 0 if . Verify by computation that the
partial sums look as shown in Fig. 369.s1, s2, s3

x � 0x � 0
x2 Sm�1

�  (1 � x2)�m � 1

y

x–1 0 1

1 s
s3

s2 s1

Fig. 369. Sum s and partial 
sums in Team Project 18(e)

19–20 HEAT EQUATION

Show that (9) in Sec. 12.6 with coefficients (10) is a solution
of the heat equation for assuming that is
continuous on the interval and has one-sided
derivatives at all interior points of that interval. Proceed as
follows.

19. Show that is bounded, say for all n.
Conclude that

if

and, by the Weierstrass test, the series (9) converges
uniformly with respect to x and t for 
Using Theorem 2, show that is continuous for

and thus satisfies the boundary conditions (2)
for 

20. Show that if and the
series of the expressions on the right converges, by
the ratio test. Conclude from this, the Weierstrass
test, and Theorem 4 that the series (9) can be
differentiated term by term with respect to t and the
resulting series has the sum . Show that (9) can
be differentiated twice with respect to x and the
resulting series has the sum Conclude from
this and the result to Prob. 19 that (9) is a solution
of the heat equation for all (The proof that (9)
satisfies the given initial condition can be found in
Ref. [C10] listed in App. 1.)

t 	 t0.

02u>0x2.

0u>0t

t 	 t0ƒ 0un>0t ƒ � ln
2Ke�ln

2t0

t 	 t0.
t 	 t0

u (x, t)
t 	 t0, 0 � x � L.

t 	 t0 
 0ƒun ƒ � Ke�ln
2t0

ƒBn ƒ � KƒBn ƒ

0 � x � L
f (x)t 
 0,
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Sequences, series, and convergence tests are discussed in Sec. 15.1. A power series
is of the form (Sec. 15.2)

(1)

is its center. The series (1) converges for and diverges for
where R is the radius of convergence. Some power series convergeƒ z � z0 ƒ 
 R,

ƒ z � z0 ƒ � Rz0

a
�

n�0

 an(z � z0)n � a0 � a1(z � z0) � a2(z � z0)2 � Á ;

SUMMARY OF CHAPTER 15
Power Series, Taylor Series

1. What is convergence test for series? State two tests from
memory. Give examples.

2. What is a power series? Why are these series very
important in complex analysis?

3. What is absolute convergence? Conditional convergence?
Uniform convergence?

4. What do you know about convergence of power series?
5. What is a Taylor series? Give some basic examples.

6. What do you know about adding and multiplying power
series?

7. Does every function have a Taylor series development?
Explain.

8. Can properties of functions be discovered from
Maclaurin series? Give examples.

9. What do you know about termwise integration of
series?

10. How did we obtain Taylor’s formula from Cauchy’s
formula?

11–15 RADIUS OF CONVERGENCE 
Find the radius of convergence.

11.

12.

13.

14. a
�

n�1

 
n5

n!
 (z � 3i)2n

a
�

n�2

 
n(n � 1)

3n  (z � i)n

a
�

n�2

 
4n

n � 1
 (z � pi)n

a
�

n�2

 
n � 1

n2 � 1
 (z � 1)n

15.

16–20 RADIUS OF CONVERGENCE
Find the radius of convergence. Try to identify the sum of
the series as a familiar function.

16. 17.

18.

19. 20.

21–25 MACLAURIN SERIES
Find the Maclaurin series and its radius of convergence.
Show details.

21. 22.

23. 24.

25.

26–30 TAYLOR SERIES

Find the Taylor series with the given point as center and its
radius of convergence.

26.

27.

28.

29.

30. ez, pi

Ln z, 3

1>z, 2i

cos z, 1
2 p

z4, i

�(exp>(�z2) � 1)>z2

1>(pz � 1)cos2 z

1>(1 � z)3(sinh z2)>z2

a
�

n�0

 
zn

(3 � 4i)na
�

n�0

 
zn

(2n)!

a
�

n�0

 
(�1)n

(2n � 1)!
 (pz)2n�1

a
�

n�0

 
zn

n!
 zn

a
�

n�1

 
zn

n

a
�

n�1

 
(�2)n�1

2n
 zn
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for all z (then we write In exceptional cases a power series may converge
only at the center; such a series is practically useless. Also, 
if this limit exists. The series (1) converges absolutely (Sec. 15.2) and uniformly
(Sec. 15.5) in every closed disk It represents an analytic
function for The derivatives are obtained by
termwise differentiation of (1), and these series have the same radius of convergence
R as (1). See Sec. 15.3.

Conversely, every analytic function can be represented by power series. These
Taylor series of are of the form (Sec. 15.4)

(2)

as in calculus. They converge for all z in the open disk with center and radius
generally equal to the distance from to the nearest singularity of (point at
which ceases to be analytic as defined in Sec. 15.4). If is entire (analytic
for all z; see Sec. 13.5), then (2) converges for all z. The functions 
etc. have Maclaurin series, that is, Taylor series with center 0, similar to those in
calculus (Sec. 15.4).

ez, cos z, sin z,
f (z)f (z)

f (z)z0

z0

( ƒ z � z0) ƒ � R),f (z) � a
�

n�0

 
1
n!

  f (n)(z0)(z � z0)n

f (z)
f (z)

f r(z), f s(z), Áƒ z � z0 ƒ � R.f (z)
ƒ z � z0 ƒ � r � R (R 
 0).

R � lim ƒan>an�1 ƒ
R � �).
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1PIERRE ALPHONSE LAURENT (1813–1854), French military engineer and mathematician, published the
theorem in 1843.

C H A P T E R 1 6

Laurent Series. 
Residue Integration

The main purpose of this chapter is to learn about another powerful method for evaluating
complex integrals and certain real integrals. It is called residue integration. Recall that
the first method of evaluating complex integrals consisted of directly applying Cauchy’s
integral formula of Sec. 14.3. Then we learned about Taylor series (Chap. 15) and will
now generalize Taylor series. The beauty of residue integration, the second method of
integration, is that it brings together a lot of the previous material.

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive
integer powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1)
is a series of positive and negative integer powers of and converges in an annulus
(a circular ring) with center Hence, by a Laurent series, we can represent a given
function that is analytic in an annulus and may have singularities outside the ring as
well as in the “hole” of the annulus.

We know that for a given function the Taylor series with a given center is unique.
We shall see that, in contrast, a function can have several Laurent series with the
same center and valid in several concentric annuli. The most important of these series
is the one that converges for that is, everywhere near the center 
except at itself, where is a singular point of The series (or finite sum) of the
negative powers of this Laurent series is called the principal part of the singularity of

at and is used to classify this singularity (Sec. 16.2). The coefficient of the power
of this series is called the residue of at Residues are used in an elegant

and powerful integration method, called residue integration, for complex contour integrals
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4).

Prerequisite: Chaps. 13, 14, Sec. 15.2.
Sections that may be omitted in a shorter course: 16.2, 16.4.
References and Answers to Problems: App. 1 Part D, App. 2.

16.1 Laurent Series
Laurent series generalize Taylor series. If, in an application, we want to develop a function

in powers of when is singular at (as defined in Sec. 15.4), we cannot
use a Taylor series. Instead we can use a new kind of series, called Laurent series,1

z0f (z)z � z0f (z)

z0.f (z)1>(z � z0)
z0,f (z)

f (z).z0z0

z00 � ƒ z � z0 ƒ � R,
z0

f (z)
z0

f (z)
z0.

z � z0



consisting of positive integer powers of (and a constant) as well as negative integer
powers of this is the new feature.

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful
integration method (“residue integration,” Sec. 16.3).

A Laurent series of converges in an annulus (in the “hole” of which may have
singularities), as follows.

T H E O R E M  1 Laurent’s Theorem

Let be analytic in a domain containing two concentric circles and with
center and the annulus between them (blue in Fig. 370). Then can be
represented by the Laurent series

(1)

consisting of nonnegative and negative powers. The coefficients of this Laurent series
are given by the integrals

(2)

taken counterclockwise around any simple closed path C that lies in the annulus
and encircles the inner circle, as in Fig. 370. [The variable of integration is denoted
by since z is used in (1).]

This series converges and represents in the enlarged open annulus obtained
from the given annulus by continuously increasing the outer circle and decreasing

until each of the two circles reaches a point where is singular.
In the important special case that is the only singular point of inside 

this circle can be shrunk to the point giving convergence in a disk except at the
center. In this case the series (or finite sum) of the negative powers of (1) is called
the principal part of at [or of that Laurent series (1)].z0f (z)

z0,
C2,f (z)z0

f (z)C2

C1

f (z)
z*

an �
1

2pi
  �

C

  
f (z*)

(z* � z0)n�1 dz*, bn �
1

2pi
  �  

C

 (z* � z0)n�1 f (z*) dz*,

 Á �
b1

z � z0
�

b2

(z � z0)2 � Á

 � a0 � a1(z � z0) � a2(z � z0)2 � Á

 f (z) � a
�

n�0

an(z � z0)n � a
�

n�1

 
bn

(z � z0)n

f (z)z0

C2C1f (z)

f (z)f (z)

z � z0;
z � z0
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z0

C2

C1

C

Fig. 370. Laurent’s theorem



COMMENT. Obviously, instead of (1), (2) we may write (denoting by 

where all the coefficients are now given by a single integral formula, namely,

Let us now prove Laurent’s theorem.

P R O O F (a) The nonnegative powers are those of a Taylor series.
To see this, we use Cauchy’s integral formula (3) in Sec. 14.3 with (instead of z) as
the variable of integration and z instead of Let and denote the functions
represented by the two terms in (3), Sec. 14.3. Then

(3)

Here z is any point in the given annulus and we integrate counterclockwise over both 
and so that the minus sign appears since in (3) of Sec. 14.3 the integration over 
is taken clockwise. We transform each of these two integrals as in Sec. 15.4. The first
integral is precisely as in Sec. 15.4. Hence we get exactly the same result, namely, the
Taylor series of 

(4)

with coefficients [see (2), Sec. 15.4, counterclockwise integration]

(5)

Here we can replace by C (see Fig. 370), by the principle of deformation of path, since
the point where the integrand in (5) is not analytic, is not a point of the annulus. This

proves the formula for the in (2).

(b) The negative powers in (1) and the formula for in (2) are obtained if we consider
It consists of the second integral times in (3). Since z lies in the annulus,

it lies in the exterior of the path Hence the situation differs from that for the first
integral. The essential point is that instead of [see in Sec. 15.4]

(6) (a) we now have (b)

Consequently, we must develop the expression in the integrand of the second
integral in (3) in powers of (instead of the reciprocal of this) to get a
convergent series. We find

(z* � z0)>(z � z0)
1>(z* � z)

` z* � z0

z � z0
` � 1.` z � z0

z* � z0
` � 1

(7*)
C2.

�1>(2pi)h(z).
bn

an

z0,
C1

an �
1

2pi
 �

C1

 
f (z*)

(z* � z0)n�1
 dz*.

g(z) �
1

2pi
 �

C1

 
f (z*)

z* � z
 dz* � a

�

n�0

 an(z � z0)n

g(z),

C2C2,
C1

f (z) � g(z) � h(z) �
1

2pi
 �

C1

 
f (z*)

z* � z
 dz* �

1
2pi

 �
C2

 
f (z*)

z* � z
 dz*.

h(z)g(z)z0.
z*

(n � 0, �1, �2, Á ).an �
1

2pi
  �

C
 
 

f (z*)

(z* � z0)n�1 dz*(2r)

 f (z) � a
�

n���

 an(z � z0)n(1r)

a�n)bn
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Compare this for a moment with (7) in Sec. 15.4, to really understand the difference. Then
go on and apply formula (8), Sec. 15.4, for a finite geometric sum, obtaining

Multiplication by and integration over on both sides now yield

with the last term on the right given by

(7)

As before, we can integrate over C instead of in the integrals on the right. We see that
on the right, the power is multiplied by as given in (2). This establishes
Laurent’s theorem, provided

(8)

(c) Convergence proof of (8). Very often (1) will have only finitely many negative powers.
Then there is nothing to be proved. Otherwise, we begin by noting that in (7)
is bounded in absolute value, say,

for all on 

because is analytic in the annulus and on and lies on and z outside, so
that From this and the ML-inequality (Sec. 14.1) applied to (7) we get the
inequality (L � 2pr2 � length of C2, r2 � ƒ z* � z0 ƒ � radius of C2 � const)

z � z* � 0.
C2z*C2,f (z*)

C2z*` f (z*)

z � z*
` � M

�

f (z*)>(z � z*)

lim
n:�

 Rn
*(z) � 0.

bn1>(z � z0)n
C2

R*n(z) �
1

2pi(z � z0)n�1
 �

C2

 
(z* � z0)n�1

z � z*
 f (z*) dz*.

�
1

(z � z0)n�1
 �

C2

 (z* � z0)nf (z*) dz* f � Rn*(z)

�
1

(z � z0)n �
C2

 (z* � z0)n�1f (z*) dz*

 �
1

2pi
 e 1

z � z0
 �

C2

 f (z*) dz* �
1

(z � z0)2 �
C2

 (z* � z0) f (z*) dz* � Á

 h(z) � � 
1

2pi
 �

C2

 
f (z*)

z* � z
 dz*

C2�f (z*)>2pi

�
1

z � z*  az* � z0

z � z0
 b

n�1

.

1
z* � z � � 

1
z � z0

 e1 �
z* � z0

z � z0
� az* � z0

z � z0
 b

2

� Á � az* � z0

z � z0
 b

n

f

1
z* � z

�
1

z* � z0 � (z � z0)
�

�1

(z � z0) a1 �
z* � z0

z � z0
 b

  .
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From (6b) we see that the expression on the right approaches zero as n approaches infinity.
This proves (8). The representation (1) with coefficients (2) is now established in the given
annulus.

(d) Convergence of (1) in the enlarged annulus. The first series in (1) is a Taylor
series [representing ]; hence it converges in the disk D with center whose radius
equals the distance of the singularity (or singularities) closest to Also, must be
singular at all points outside where is singular.

The second series in (1), representing is a power series in Let the
given annulus be where and are the radii of and respectively
(Fig. 370). This corresponds to Hence this power series in Z must
converge at least in the disk This corresponds to the exterior of

so that is analytic for all z outside . Also, must be singular inside 
where is singular, and the series of the negative powers of (1) converges for all z
in the exterior E of the circle with center and radius equal to the maximum distance
from to the singularities of inside The domain common to D and E is the
enlarged open annulus characterized near the end of Laurent’s theorem, whose proof
is now complete.

Uniqueness. The Laurent series of a given analytic function in its annulus of
convergence is unique (see Team Project 18). However, may have different Laurent
series in two annuli with the same center; see the examples below. The uniqueness is
essential. As for a Taylor series, to obtain the coefficients of Laurent series, we do not
generally use the integral formulas (2); instead, we use various other methods, some of
which we shall illustrate in our examples. If a Laurent series has been found by any such
process, the uniqueness guarantees that it must be the Laurent series of the given function
in the given annulus.

E X A M P L E  1 Use of Maclaurin Series

Find the Laurent series of with center 0.

Solution. By (14), Sec. 15.4, we obtain

Here the “annulus” of convergence is the whole complex plane without the origin and the principal part of the 
series at 0 is 

E X A M P L E  2 Substitution

Find the Laurent series of with center 0.

Solution. From (12) in Sec. 15.4 with z replaced by we obtain a Laurent series whose principal part is
an infinite series,

�( ƒ z ƒ 
 0).z2e1>z � z2  a1 �
1

1!z
�

1

2!z2 � Á b � z2 � z �
1

2
�

1

3!z
�

1

4!z2 � Á

1>z
z2e1>z

�z�4 � 1
6 z�2.

( ƒ z ƒ 
 0).z�5 sin z � a
�

n�0

 
(�1)n

(2n � 1)!
 z2n�4 �

1

z4 �
1

6z2 �
1

120
�

1

5040
 z2 � � Á

z�5 sin z

f (z)
f (z)

�

C2.f (z)z0

z0

f (z)
C2h(z)C2h(z)C2,

ƒ z � z0 ƒ 
 r2ƒZ ƒ � 1>r2.
1>r2 
 ƒZ ƒ 
 1>r1.

C2,C1r2r1r2 � ƒ z � z0 ƒ � r1,
Z � 1>(z � z0).h(z),

f (z)C1

 g(z)z0.
z0g(z)

ƒR*
n(z) ƒ �

1

2p ƒ z � z0 ƒn�1
 r 2

n�1 M�L �
M�L

2p
 a r2

ƒ z � z0 ƒ
 bn�1

.
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E X A M P L E  3 Development of 

Develop (a) in nonnegative powers of z, (b) in negative powers of z .

Solution.

(a)

(b)

E X A M P L E  4 Laurent Expansions in Different Concentric Annuli

Find all Laurent series of with center 0.

Solution. Multiplying by we get from Example 3

(I)

(II)

E X A M P L E  5 Use of Partial Fractions

Find all Taylor and Laurent series of with center 0.

Solution. In terms of partial fractions,

(a) and (b) in Example 3 take care of the first fraction. For the second fraction,

(c) (

(d) (

(I) From (a) and (c), valid for (see Fig. 371),

f (z) � a
�

n�0

 a1 �
1

2n�1  b  zn �
3

2
�

5

4
 z �

9

8
 z2 � Á .

ƒ z ƒ � 1

ƒ z ƒ 
 2).�  

1

z � 2
� �  

1

z a1 �
2
z

 b
� �a

�

n�0

 
2n

zn�1

ƒ z ƒ � 2),�  

1

z � 2
�

1

2 a1 �
1

2
 zb

� a
�

n�0

  
1

2n�1 zn

f (z) � �  

1

z � 1
�

1

z � 2
 .

f (z) �
�2z � 3

z2 � 3z � 2

�( ƒ z ƒ 
 1).
1

z3 � z4
� �a

�

n�0

  
1

zn�4
� � 

1

z4
�

1

z5
� Á

(0 � ƒ z ƒ � 1),
1

z3 � z4 � a
�

n�0

 zn�3 �
1

z3 �
1

z2 �
1

z
� 1 � z � Á

1>z3,

1>(z3 � z4)

�(valid if ƒ z ƒ 
 1).
1

1 � z
�

�1

z(1 � z�1)
� �a

�

n�0

  
1

zn�1 � � 

1

z
�

1

z2 � Á

(valid if ƒ z ƒ � 1).
1

1 � z
� a

�

n�0

 zn

1>(1 � z)

1>(1 � z)
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I
1 2

Fig. 371. Regions of convergence in Example 5



(II) From (c) and (b), valid for 

(III) From (d) and (b), valid for 

If in Laurent’s theorem is analytic inside the coefficients in (2) are zero by
Cauchy’s integral theorem, so that the Laurent series reduces to a Taylor series. Examples
3(a) and 5(I) illustrate this.

bnC2,f (z)

�f (z) � �a
�

n�0

 (2n � 1)  
1

zn�1 � � 
2

z
�

3

z2 �
5

z3 �
9

z4 � Á .

ƒ z ƒ 
 2,

f (z) � a
�

n�0

 
1

2n�1  zn � a
�

n�0

  
1

zn�1 �
1

2
�

1

4
 z �

1

8
 z2 � Á �

1

z
�

1

z2 � Á .

1 � ƒ z ƒ � 2,
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1–8 LAURENT SERIES NEAR A SINGULARITY
AT 0

Expand the function in a Laurent series that converges for
and determine the precise region of conver-

gence. Show the details of your work.

1. 2.

3. 4.

5. 6.

7. 8.

9–16 LAURENT SERIES NEAR A SINGULARITY
AT z0

Find the Laurent series that converges for 
and determine the precise region of convergence. Show details.

9. 10.

11. 12.

13. 14.

15.

16.
sin z

(z � 1
4 p)3

 , z0 � 1
4 p

cos z

(z � p)2
 , z0 � p

eaz

z � b
 , z0 � b

1

z3(z � i)2
 , z0 � i

1

z2(z � i)
 , z0 � i

z2

(z � pi)4
 , z0 � pi

z2 � 3i

(z � 3)2
 , z0 � 3

ez

(z � 1)2
 , z0 � 1

ƒ z � z0 ƒ � R0 �

ez

z2 � z3
z3

 cosh 
1
z

sinh 2z

z2

1

z2 � z3

sin pz

z2

exp z2

z3

exp (�1>z2)

z2

cos z

z4

0 � ƒ z ƒ � R

P R O B L E M  S E T  1 6 . 1

17. CAS PROJECT. Partial Fractions. Write a program
for obtaining Laurent series by the use of partial
fractions. Using the program, verify the calculations in
Example 5 of the text. Apply the program to two other
functions of your choice.

18. TEAM PROJECT. Laurent Series. (a) Uniqueness.
Prove that the Laurent expansion of a given analytic
function in a given annulus is unique.

(b) Accumulation of singularities. Does tan 
have a Laurent series that converges in a region

? (Give a reason.)

(c) Integrals. Expand the following functions in a
Laurent series that converges for 

19–25 TAYLOR AND LAURENT SERIES
Find all Taylor and Laurent series with center Determine
the precise regions of convergence. Show details.

19. 20.

21.

22. 23.

24.

25.
z3 � 2iz2

(z � i)2
 , z0 � i

sinh z

(z � 1)4
 , z0 � 1

z8

1 � z4
 , z0 � 0

1

z2
 , z0 � i

sin z

z � 1
2 p

 , z0 � �1
2 p

1
z  , z0 � 1

1

1 � z2
 , z0 � 0

z0.

1
z2 �

z

0

 
et � 1

t
 dt,    

1
z3  �

z

0

 
sin t

t
 dt.

ƒ z ƒ 
 0:

0 � ƒ z ƒ � R

(1>z)
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16.2 Singularities and Zeros. Infinity
Roughly, a singular point of an analytic function is a at which ceases to be
analytic, and a zero is a z at which Precise definitions follow below. In this
section we show that Laurent series can be used for classifying singularities and Taylor
series for discussing zeros.

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also
remember that, by definition, a function is a single-valued relation, as was emphasized
in Sec. 13.3.

We say that a function is singular or has a singularity at a point if is not
analytic (perhaps not even defined) at but every neighborhood of contains
points at which is analytic. We also say that is a singular point of .

We call an isolated singularity of if has a neighborhood without
further singularities of . Example: has isolated singularities at etc.;

has a nonisolated singularity at 0. (Explain!)
Isolated singularities of at can be classified by the Laurent series

(1) (Sec. 16.1)

valid in the immediate neighborhood of the singular point except at itself, that
is, in a region of the form

The sum of the first series is analytic at as we know from the last section. The
second series, containing the negative powers, is called the principal part of (1), as we
remember from the last section. If it has only finitely many terms, it is of the form

(2)

Then the singularity of at is called a pole, and m is called its order. Poles of
the first order are also known as simple poles.

If the principal part of (1) has infinitely many terms, we say that has at an
isolated essential singularity.

We leave aside nonisolated singularities.

E X A M P L E  1 Poles. Essential Singularities

The function

has a simple pole at and a pole of fifth order at Examples of functions having an isolated essential
singularity at are

e1>z � a
�

n�0

 
1

n!zn � 1 �
1

z
�

1

2!z2 � Á

z � 0
z � 2.z � 0

f (z) �
1

z(z � 2)5
�

3

(z � 2)2

z � z0f (z)

z � z0f (z)

(bm � 0).
b1

z � z0
� Á �

bm

(z � z0)m

z � z0,

0 � ƒ z � z0 ƒ � R.

z0z � z0,

f (z) � a
�

n�0

 an(z � z0)n � a
�

n�1

 
bn

(z � z0)n

z � z0f (z)
tan (1>z)

�p>2, �3p>2,tan zf (z)
z � z0f (z)z � z0

f (z)z � z0f (z)
z � z0z � z0,

f (z)z � z0f (z)

f (z) � 0.
f (z)z0f (z)
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and

Section 16.1 provides further examples. In that section, Example 1 shows that has a fourth-order
pole at 0. Furthermore, Example 4 shows that has a third-order pole at 0 and a Laurent series with
infinitely many negative powers. This is no contradiction, since this series is valid for it merely tells
us that in classifying singularities it is quite important to consider the Laurent series valid in the immediate
neighborhood of a singular point. In Example 4 this is the series (I), which has three negative powers.

The classification of singularities into poles and essential singularities is not merely a formal
matter, because the behavior of an analytic function in a neighborhood of an essential
singularity is entirely different from that in the neighborhood of a pole.

E X A M P L E  2 Behavior Near a Pole

has a pole at and as in any manner. This illustrates the following 
theorem.

T H E O R E M  1 Poles

If is analytic and has a pole at then as in any manner.

The proof is left as an exercise (see Prob. 24).

E X A M P L E  3 Behavior Near an Essential Singularity

The function has an essential singularity at It has no limit for approach along the imaginary
axis; it becomes infinite if through positive real values, but it approaches zero if through negative real
values. It takes on any given value in an arbitrarily small -neighborhood of To see the
latter, we set and then obtain the following complex equation for r and which we must solve:

Equating the absolute values and the arguments, we have that is

and

respectively. From these two equations and we obtain the formulas

and

Hence r can be made arbitrarily small by adding multiples of to leaving c unaltered. This illustrates the 
very famous Picard’s theorem (with as the exceptional value).

T H E O R E M  2 Picard’s Theorem

If is analytic and has an isolated essential singularity at a point it takes on
every value, with at most one exceptional value, in an arbitrarily small -neighborhood
of z0.

P
z0,f (z)

�z � 0
a,2p

tan u � � 
a

ln c0

 .r 2 �
1

(ln c0)2 � a2

cos2 u � sin2 u � r 2(ln c0)2 � a2r 2 � 1

�sin u � arcos u � r ln c0,

e(cos u)>r � c0,

e1>z � e(cos u�i sin u)>r � c0eia.

u,z � reiu,
z � 0.Pc � c0eia � 0

z: 0z: 0
z � 0.f (z) � e1>z

z: z0ƒ f (z) ƒ : �z � z0,f (z)

�
z : 0ƒ f (z) ƒ : �z � 0,f (z) � 1>z2

�

ƒ z ƒ 
 1;
1>(z3 � z4)

z�5 sin z

sin  
1

z
� a

�

n�0

  
(�1)n

(2n � 1)!z2n�1 �
1

z
�

1

3!z3 �
1

5!z5  � � Á .

For the rather complicated proof, see Ref. [D4], vol. 2, p. 258. For historical information
on Picard, see footnote 9 in Problem Set 1.7.



Removable Singularities. We say that a function has a removable singularity at
if is not analytic at but can be made analytic there by assigning a

suitable value Such singularities are of no interest since they can be removed as
just indicated. Example: becomes analytic at if we define 

Zeros of Analytic Functions
A zero of an analytic function in a domain D is a in D such that 
A zero has order n if not only f but also the derivatives are all 0 at 
but A first-order zero is also called a simple zero. For a second-order zero,

but And so on.

E X A M P L E  4 Zeros

The function has simple zeros at The function has second-order zeros at and The
function has a third-order zero at The function has no zeros (see Sec. 13 5). The function 
has simple zeros at and has second-order zeros at these points. The function has 
second-order zeros at and the function has fourth-order zeros at these points.

Taylor Series at a Zero. At an nth-order zero of the derivatives 
are zero, by definition. Hence the first few coefficients of the Taylor

series (1), Sec. 15.4, are zero, too, whereas so that this series takes the form

(3)

This is characteristic of such a zero, because, if has such a Taylor series, it has an
nth-order zero at as follows by differentiation.

Whereas nonisolated singularities may occur, for zeros we have

T H E O R E M  3 Zeros

The zeros of an analytic function are isolated; that is, each of them has
a neighborhood that contains no further zeros of 

P R O O F The factor in (3) is zero only at The power series in the brackets 
represents an analytic function (by Theorem 5 in Sec. 15.3), call it Now

since an analytic function is continuous, and because of this continuity, 
also in some neighborhood of Hence the same holds of 

This theorem is illustrated by the functions in Example 4.
Poles are often caused by zeros in the denominator. (Example: tan z has poles where

cos z is zero.) This is a major reason for the importance of zeros. The key to the connection
is the following theorem, whose proof follows from (3) (see Team Project 12).

T H E O R E M  4 Poles and Zeros

Let be analytic at and have a zero of nth order at Then 
has a pole of nth order at and so does provided is analytic
at and h(z0) � 0.z � z0

h(z)h(z)>f (z),z � z0;
1>f (z)z � z0.z � z0f (z)

�f (z).z � z0.g(z) � 0
g(z0) � an � 0,

g(z).
[ Á ]z � z0.(z � z0)n

f (z).
f (z) ([ 0)

z � z0,
f (z)

(an � 0). � (z � z0)n [an � an�1(z � z0) � an�2(z � z0)2 � Á ]

 f (z) � an(z � z0)n � an�1(z � z0)n�1 � Á

an � 0,
a0, Á , an�1f (n�1)(z0)

f r(z0), Á ,f (z),z � z0

�(1 � cos z)20, �2p, �4p, Á ,
1 � cos zsin2 z0, �p, �2p, Á ,

sin zezz � a.(z � a)3
�i.�1(1 � z4)2�i.1 � z2

f s(z0) � 0.f (z0) � f r(z0) � 0
f (n)(z0) � 0.

z � z0f r, f s, Á , f (n�1)
f (z0) � 0.z � z0f (z)

f (0) � 1.z � 0f (z) � (sin z)>z
f (z0).

z � z0,f (z)z � z0

f (z)
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Riemann Sphere. Point at Infinity
When we want to study complex functions for large the complex plane will generally
become rather inconvenient. Then it may be better to use a representation of complex numbers
on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the complex 
z-plane at (Fig. 372), and we let the image of a point P (a number z in the plane) be
the intersection of the segment PN with S, where N is the “North Pole” diametrically
opposite to the origin in the plane. Then to each z there corresponds a point on S.

Conversely, each point on S represents a complex number z, except for N, which does
not correspond to any point in the complex plane. This suggests that we introduce an
additional point, called the point at infinity and denoted (“infinity”) and let its image
be N. The complex plane together with is called the extended complex plane. The
complex plane is often called the finite complex plane, for distinction, or simply the
complex plane as before. The sphere S is called the Riemann sphere. The mapping of
the extended complex plane onto the sphere is known as a stereographic projection.
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight
line through the origin?)

Analytic or Singular at Infinity
If we want to investigate a function for large we may now set and investigate

in a neighborhood of We define to be analytic or singular
at infinity if is analytic or singular, respectively, at We also define

(4)

if this limit exists.
Furthermore, we say that has an nth-order zero at infinity if has such a zero

at Similarly for poles and essential singularities.

E X A M P L E  5 Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions

The function is analytic at since is analytic at and has a second-
order zero at The function is singular at and has a third-order pole there since the function

has such a pole at The function has an essential singularity at since 
has such a singularity at Similarly, and have an essential singularity at 

Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville’s
theorem (Sec. 14.4) tells us that the only bounded entire functions are the constants, hence any nonconstant
entire function must be unbounded. Hence it has a singularity at a pole if it is a polynomial or an essential
singularity if it is not. The functions just considered are typical in this respect.

�,

�.sin zcos zw � 0.
e1>w�ezw � 0.g(w) � f (1>w) � 1>w3

�f (z) � z3�.
f (z)w � 0,g(w) � f (1>w) � w2�f (z) � 1>z2

w � 0.
f (1>w)f (z)

g(0) � lim
w:0

 g(w)

w � 0.g(w)
f (z)w � 0.f (z) � f (1>w) � g(w)

z � 1>wƒ z ƒ ,f (z)

�
�

P*
z � 0

ƒ z ƒ ,
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y

P
x

N

P*

Fig. 372. Riemann sphere



An analytic function whose only singularities in the finite plane are poles is called a meromorphic function.
Examples are rational functions with nonconstant denominator, , and 

In this section we used Laurent series for investigating singularities. In the next section
we shall use these series for an elegant integration method.

�csc z.tan z, cot z, sec z
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1–10 ZEROS
Determine the location and order of the zeros.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11. Zeros. If is analytic and has a zero of order n at
show that has a zero of order 2n at 

12. TEAM PROJECT. Zeros. (a) Derivative. Show that
if has a zero of order at then 
has a zero of order at 

(b) Poles and zeros. Prove Theorem 4.

(c) Isolated k-points. Show that the points at which
a nonconstant analytic function has a given value
k are isolated.

(d) Identical functions. If and are analytic
in a domain D and equal at a sequence of points in
D that converges in D, show that in D.f1(z) � f2(z)

zn

f2(z)f1(z)

f (z)

z0.n � 1
f r(z)z � z0,n 
 1f (z)

z0.f 2(z)z � z0,
f (z)

(z2 � 8)3(exp (z2) � 1)

sin 2z cos 2z

(sin z � 1)3

z4 � (1 � 8i) z2 � 8i

cosh4 zz�2 sin2 pz

tan2 2z(z � 81i)4

(z4 � 81)3sin4 12 z

13–22 SINGULARITIES

Determine the location of the singularities, including those
at infinity. For poles also state the order. Give reasons.

13.

14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Essential singularity. Discuss in a similar way as
is discussed in Example 3 of the text.

24. Poles. Verify Theorem 1 for Prove
Theorem 1.

25. Riemann sphere. Assuming that we let the image of
the x-axis be the meridians and describe and
sketch (or graph) the images of the following regions
on the Riemann sphere: (a) (b) the lower
half-plane, (c) 1

2 � ƒ z ƒ � 2.
ƒ z ƒ 
 100,

180°,0°

f (z) � z�3 � z�1.

e1>z
e1>z2

(z � p)�1 sin ze1>(z�1)>(ez � 1)

1>(cos z � sin z)1>(ez � e2z)

z3 exp a 1
z � 1

 bcot4 z

tan pzz  exp (1>(z � 1 � i)2)

ez�i �
2

z � i
�

8
(z � i)3

1

(z � 2i)2 �
z

z � i
�

z � 1

(z � i)2

P R O B L E M  S E T  1 6 . 2

16.3 Residue Integration Method
We now cover a second method of evaluating complex integrals. Recall that we solved
complex integrals directly by Cauchy’s integral formula in Sec. 14.3. In Chapter 15 we
learned about power series and especially Taylor series. We generalized Taylor series to
Laurent series (Sec. 16.1) and investigated singularities and zeroes of various functions
(Sec. 16.2). Our hard work has paid off and we see how much of the theoretical groundwork
comes together in evaluating complex integrals by the residue method.

The purpose of Cauchy’s residue integration method is the evaluation of integrals

taken around a simple closed path C. The idea is as follows.
If is analytic everywhere on C and inside C, such an integral is zero by Cauchy’s

integral theorem (Sec. 14.2), and we are done.
f (z)

�
C

  f (z) dz
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The situation changes if has a singularity at a point inside C but is otherwise
analytic on C and inside C as before. Then has a Laurent series

that converges for all points near (except at itself), in some domain of the
form (sometimes called a deleted neighborhood, an old-fashioned term
that we shall not use). Now comes the key idea. The coefficient of the first negative
power of this Laurent series is given by the integral formula (2) in Sec. 16.1
with namely,

Now, since we can obtain Laurent series by various methods, without using the integral
formulas for the coefficients (see the examples in Sec. 16.1), we can find by one of
those methods and then use the formula for for evaluating the integral, that is,

(1)

Here we integrate counterclockwise around a simple closed path C that contains 
in its interior (but no other singular points of on or inside C!).

The coefficient is called the residue of at and we denote it by

(2)

E X A M P L E  1 Evaluation of an Integral by Means of a Residue

Integrate the function counterclockwise around the unit circle C.

Solution. From (14) in Sec. 15.4 we obtain the Laurent series

which converges for (that is, for all This series shows that has a pole of third order at 
and the residue . From (1) we thus obtain the answer

E X A M P L E  2 CAUTION! Use the Right Laurent Series!

Integrate clockwise around the circle C: .

Solution. shows that is singular at and Now lies outside C.
Hence it is of no interest here. So we need the residue of at 0. We find it from the Laurent series that
converges for This is series (I) in Example 4, Sec. 16.1,

(0 � ƒ z ƒ � 1).
1

z3 � z4 �
1

z3 �
1

z2 �
1

z
� 1 � z � Á

0 � ƒ z ƒ � 1.
f (z)

z � 1z � 1.z � 0f (z)z3 � z4 � z3(1 � z)

ƒ z ƒ � 1
2 f (z) � 1>(z3 � z4)

��
C

  
sin z

z4  dz � 2pib1 � �  
pi

3
 .

b1 � �1
3 !

z � 0f (z)z � 0).ƒ z ƒ 
 0

f (z) �
sin z

z4 �
1

z3 �
1

3!z
�

1

5!
�

z3

7!
� � Á

f (z) � z�4 sin z

b1 � Res
z�z0

  f (z).

z � z0f (z)b1

f (z)
z � z0

�
C

  f (z) dz � 2pib1.

b1

b1

b1 �
1

2pi
  �

C

  f (z) dz.

n � 1,
1>(z � z0)

b1

0 � ƒ z � z0 ƒ � R
z � z0z � z0

f (z) � a
�

n�0

 an(z � z0)n �
b1

z � z0
�

b2

(z � z0)2 � Á

f (z)
z � z0f (z)



We see from it that this residue is 1. Clockwise integration thus yields

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

we would have obtained the wrong answer, 0, because this series has no power 

Formulas for Residues
To calculate a residue at a pole, we need not produce a whole Laurent series, but, more
economically, we can derive formulas for residues once and for all.

Simple Poles at . A first formula for the residue at a simple pole is

(3)

A second formula for the residue at a simple pole is

(4)

In (4) we assume that with and has a simple zero at 
so that has a simple pole at by Theorem 4 in Sec. 16.2.

P R O O F We prove (3). For a simple pole at the Laurent series (1), Sec. 16.1, is

Here (Why?) Multiplying both sides by and then letting we obtain
the formula (3):

where the last equality follows from continuity (Theorem 1, Sec. 15.3).
We prove (4). The Taylor series of at a simple zero is

Substituting this into and then f into (3) gives

cancels. By continuity, the limit of the denominator is and (4) follows. �qr(z0)z � z0

Res
z�z0

  f (z) � lim
z:z0

 (z � z0)  

p(z)

q(z)
 � lim

z:z0

  
(z � z0)p(z)

(z � z0)[qr(z0) � (z � z0)qs(z0)>2 � Á ]
 .

f � p>q

q(z) � (z � z0)qr(z0) �
(z � z0)2

2!
 qs(z0) � Á .

z0q(z)

lim
z:z0  

(z � z0) f (z) � b1 � lim
z:z0

 (z � z0)[a0 � a1(z � z0) � Á ] � b1

z : z0,z � z0b1 � 0.

f (z) �
b1

z � z0
� a0 � a1(z � z0) � a2(z � z0)2 � Á  (0 � ƒ z � z0 ƒ � R).

z � z0

z0f (z)
z0,q(z)p(z0) � 0f (z) � p(z)>q(z)

(Proof below).Res
z�z0

  f (z) � Res
z�z0

  
p(z)

q(z)
�

p(z0)

qr(z0)
 .

(Proof below).Res
z�z0

  f (z) � b1 � lim
z:z0

 (z � z0) f (z).

z0

�1>z.

( ƒ z ƒ 
 1),
1

z3 � z4
� �  

1

z4
�

1

z5
�

1

z6
� Á

�
C

   
dz

z3 � z4
� �2pi Res

z�0   
f (z) � �2pi.
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E X A M P L E  3 Residue at a Simple Pole

has a simple pole at i because , and (3) gives the residue

By (4) with and we confirm the result,

Poles of Any Order at . The residue of at an mth-order pole at is

(5)

In particular, for a second-order pole 

P R O O F We prove (5). The Laurent series of converging near (except at itself) is (Sec. 16.2)

where The residue wanted is Multiplying both sides by gives

We see that is now the coefficient of the power of the power series of
Hence Taylor’s theorem (Sec. 15.4) gives (5):

E X A M P L E  4 Residue at a Pole of Higher Order

has a pole of second order at because the denominator equals
(verify!). From we obtain the residue

�Res
z�1   

f (z) � lim
z:1

 
d

dz
 [(z � 1)2 f (z)] � lim

z:1
  

d

dz
  a 50z

z � 4
 b �

200

52 � 8.

(5*)(z � 4)(z � 1)2
z � 1f (z) � 50z>(z3 � 2z2 � 7z � 4)

� �
1

(m � 1)!
  

dm�1

dzm�1  [(z � z0)mf (z)].

 b1 �
1

(m � 1)!
 g(m�1)(z0)

g(z) � (z � z0)mf (z).
(z � z0)m�1b1

(z � z0)mf (z) � bm � bm�1(z � z0) � Á � b1(z � z0)m�1 � a0(z � z0)m � Á .

(z � z0)mb1.bm � 0.

f (z) �
bm

(z � z0)m �
bm�1

(z � z0)m�1 � Á �
b1

z � z0
� a0 � a1(z � z0) � Á

z0z0f (z)

Res
z�z0   

f (z) � lim
z:z0

 {[(z � z0)2f (z)]r}.(5*)

(m � 2),

Res
z�z0

 
  
f (z) �

1
(m � 1)!

  lim
z:z

0

 e dm�1

dzm�1  c (z � z0)mf (z) d f .

z0f (z)z0

�Res
z�i

  
9z � i

z(z2 � 1)
� c 9z � i

3z2 � 1
 d

z�i

�
10i

�2
� �5i.

qr(z) � 3z2 � 1p(i) � 9i � i

Res
z�i

  
9z � i

z(z2 � 1)
� lim

z:i
 (z � i)  

9z � i

z(z � i)(z � i)
� c 9z � i

z(z � i)
 d

z�i

�
10i

�2
� �5i.

z2 � 1 � (z � i)(z � i)f (z) � (9z � i)>(z3 � z)
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Fig. 373. Residue theorem

Several Singularities Inside the Contour. 
Residue Theorem
Residue integration can be extended from the case of a single singularity to the case of
several singularities within the contour C. This is the purpose of the residue theorem. The
extension is surprisingly simple.

T H E O R E M  1 Residue Theorem

Let be analytic inside a simple closed path C and on C, except for finitely many
singular points inside C. Then the integral of taken counterclockwise
around C equals times the sum of the residues of at 

(6) �
C

 f (z) dz � 2pia
k

j�1

 Res
z�zj  

f (z).

z1, Á , zk :f (z)2pi
f (z)z1, z2, Á , zk

f (z)
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P R O O F We enclose each of the singular points in a circle with radius small enough that
those k circles and C are all separated (Fig. 373 where Then is analytic in the
multiply connected domain D bounded by C and and on the entire boundary
of D. From Cauchy’s integral theorem we thus have

(7)

the integral along C being taken counterclockwise and the other integrals clockwise (as in
Figs. 354 and 355, Sec. 14.2). We take the integrals over to the right and
compensate the resulting minus sign by reversing the sense of integration. Thus,

(8)

where all the integrals are now taken counterclockwise. By (1) and (2),

so that (8) gives (6) and the residue theorem is proved. �

j � 1, Á , k,�
Cj

 
 f (z) dz � 2pi Res

z�zj

  f (z),

�
C

  f (z) dz � �
C1

 f (z) dz � �
C2

 f (z) dz � Á � �
Ck

  f (z) dz

C1, Á , Ck

�
C

 f (z) dz � �
C1

 f (z) dz � �
C2

 f (z) dz � Á � �
Ck

  f (z) dz � 0,

C1, Á , Ck

f (z)k � 3).
Cjz j



This important theorem has various applications in connection with complex and real integrals.
Let us first consider some complex integrals. (Real integrals follow in the next section.)

E X A M P L E  5 Integration by the Residue Theorem. Several Contours

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside
C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0 outside, (d) 0 and 1 are outside.

Solution. The integrand has simple poles at 0 and 1, with residues [by (3)]

[Confirm this by (4).] Answer: (a) (b) (c) (d) 0.

E X A M P L E  6 Another Application of the Residue Theorem

Integrate counterclockwise around the circle C: .

Solution. is not analytic at but all these points lie outside the contour C. Because
of the denominator the given function has simple poles at We thus obtain from
(4) and the residue theorem

E X A M P L E  7 Poles and Essential Singularities

Evaluate the following integral, where C is the ellipse (counterclockwise, sketch it).

Solution. Since at and the first term of the integrand has simple poles at inside
C, with residues [by (4); note that 

and simple poles at which lie outside C, so that they are of no interest here. The second term of the integrand
has an essential singularity at 0, with residue as obtained from

Answer: by the residue theorem. �2pi(� 
1
16 � 1

16 � 1
2 p2) � p(p2 � 1

4 )i � 30.221i

( ƒ z ƒ 
 0).zep>z � z a1 �
p

z
�
p2

2!z2 �
p3

3!z3 � Á b � z � p �
p2

2
 # 1

z
� Á

p2>2
�2,

Res
z��2i

 
zepz

z4 � 16
� c zepz

4z3  d
z��2i

�� 
1

16

Res
z�2i

  
zepz

z4 � 16
� c zepz

4z3  d
z�2i

� � 
1

16
  ,

e2pi � 1]
�2i�2,�2iz4 � 16 � 0

�
C

   a zepz

z4 � 16
� zep>zb dz.

9x2 � y2 � 9

� � 2pi tan 1 � 9.7855i.

 � 2pi a tan z

2z
 `

z�1
�

tan z

2z
`
z��1

b

 �
C

   

tan z

z2 � 1
  dz � 2pi aRes

z�1
  

tan z

z2 � 1
 � Res

z��1
  

tan z

z2 � 1
 b

�1.z2 � 1 � (z � 1)(z � 1)
�p>2, �3p>2, Á ,tan z

ƒ z ƒ � 3
2 (tan z)>(z2 � 1)

�2pi,�8pi,2pi(�4 � 1) � �6pi,

Res
z�0   

4 � 3z

z(z � 1)
� c 4 � 3z

z � 1
 d

z�0

� �4,  Res
z�1

  
4 � 3z

z(z � 1)
� c 4 � 3z

z
 d

z�1

� 1.

�
C

   
4 � 3z

z2 � z
  dz
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16.4 Residue Integration of Real Integrals
Surprisingly, residue integration can also be used to evaluate certain classes of complicated
real integrals. This shows an advantage of complex analysis over real analysis or calculus.

Integrals of Rational Functions of cos � and sin �
We first consider integrals of the type

(1) J � �
2p

0

F(cos u, sin u) du

SEC. 16.4 Residue Integration of Real Integrals 725

1. Verify the calculations in Example 3 and find the other
residues.

2. Verify the calculations in Example 4 and find the other
residue.

3–12 RESIDUES
Find all the singularities in the finite plane and the
corresponding residues. Show the details.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. CAS PROJECT. Residue at a Pole. Write a program
for calculating the residue at a pole of any order in the
finite plane. Use it for solving Probs. 5–10.

14–25 RESIDUE INTEGRATION
Evaluate (counterclockwise). Show the details.

14.

15. �
C

  tan 2pz dz, C: ƒ z � 0.2 ƒ � 0.2

�
C

  
z � 23

z2 � 4z � 5
 dz, C: ƒ z � 2 � i ƒ � 3.2

e1>(1�z)ez

(z � pi)3

z4

z2 � iz � 2

1

1 � ez

p

(z2 � 1)2
cot pz

tan z
8

1 � z2

cos z

z4

sin 2z

z6

16. the unit circle

17.

18.

19.

20.

21.

22. the unit circle

23. the unit circle

24.

25. �
C

  
z  cosh pz

z4 � 13z2 � 36
 dz, ƒ z ƒ � p

�
C

  
exp (�z2)

sin 4z
 dz, C: ƒ z ƒ � 1.5

�
C

  
30z2 � 23z � 5

(2z � 1)2(3z � 1)
 dz, C

�
C

  
z2 sin z

4z2 � 1
 dz, C

�
C

  
cos pz

z5
 dz, C: ƒ z ƒ � 1

2 

�
C

  
dz

(z2 � 1)3
 , C: ƒ z � i ƒ � 3

�
C

  
sinh z

2z � i
 dz, C: ƒ z � 2i ƒ � 2

�
C

  
z � 1

z4 � 2z3
 dz, C: ƒ z � 1 ƒ � 2

�
C

  
ez

cos z
 dz, C: ƒ z � pi>2 ƒ � 4.5

�
C

 e1>z dz, C:

P R O B L E M  S E T  1 6 . 3



where is a real rational function of and [for example, 
and is finite (does not become infinite) on the interval of integration. Setting

we obtain

(2)

Since F is rational in and Eq. (2) shows that F is now a rational function of
z, say, Since we have and the given integral takes the form

(3)

and, as ranges from 0 to in (1), the variable ranges counterclockwise once
around the unit circle (Review Sec. 13.5 if necessary.)

E X A M P L E  1 An Integral of the Type (1)

Show by the present method that 

Solution. We use and Then the integral becomes

We see that the integrand has a simple pole at outside the unit circle C, so that it is of no interest
here, and another simple pole at (where inside C with residue [by (3), Sec. 16.3]

Answer: (Here is the factor in front of the last integral.)

As another large class, let us consider real integrals of the form

(4)

Such an integral, whose interval of integration is not finite is called an improper integral,
and it has the meaning

�
�

��

 f (x) dx � lim
a:��

 �
0

a
 
f (x) dx � lim

b:�
 �

b

0
 
f (x) dx.(5r)

�
�

��

 f (x) dx.

��2>i2pi(�2>i)(�1
2 ) � 2p.

 � � 

1

2
 .

 Res
z�z2

 
1

(z � 12 � 1)(z � 12 � 1)
 � c 1

z � 12 � 1
 d

z�12�1

z � 12 � 1 � 0)z2 � 12 � 1
z1 � 12 � 1

 � � 
2

i
 �

C 
 

dz

(z � 12 � 1)(z � 12 � 1)
 .

 �
C

 
dz>iz

12 �
1

2
  az �

1
z

 b
� �

C

  
dz

� 

i

2
 (z2 � 212z � 1)

du � dz>iz.cos u � 1
2 (z � 1>z)

�
2p

0

du

12 � cos u
� 2p.

ƒ z ƒ � 1.
z � eiu2pu

J � �
C

  f (z) 
dz

iz

du � dz>izdz>du � ieiu,f (z).
sin u,cos u

 sin u �
1
2i

 (eiu � e�iu) �
1
2i

 az �
1
z
b .

 cos u �
1
2

 (eiu � e�iu) �
1
2

 az �
1
z

 b

eiu � z,
(5 � 4 cos u)]

(sin2 u)>sin ucos uF(cos u, sin u)
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If both limits exist, we may couple the two independent passages to and , and write

(5)

The limit in (5) is called the Cauchy principal value of the integral. It is written

pr. v. 

It may exist even if the limits in do not. Example:

We assume that the function in (4) is a real rational function whose denominator
is different from zero for all real x and is of degree at least two units higher than the
degree of the numerator. Then the limits in exist, and we may start from (5). We
consider the corresponding contour integral

around a path C in Fig. 374. Since is rational, has finitely many poles in the
upper half-plane, and if we choose R large enough, then C encloses all these poles. By
the residue theorem we then obtain

where the sum consists of all the residues of at the points in the upper half-plane at
which has a pole. From this we have

(6)

We prove that, if the value of the integral over the semicircle S approaches
zero. If we set then S is represented by and as z ranges along S, the
variable ranges from 0 to Since, by assumption, the degree of the denominator of

is at least two units higher than the degree of the numerator, we have

( ƒ z ƒ � R 
 R0)ƒ f (z) ƒ �
k

ƒ z ƒ 2

f (z)
p.u

R � const,z � Reiu,
R: �,

�
R

�R

 f (x) dx � 2pia  Res f (z) � �
S

 
f (z) dz.

f (z)
f (z)

�
C

  
f (z) dz � �

S
 
f (z) dz � �

R

�R
 
f (x) dx � 2pi a  Res f (z)

f (z)f (x)

�
C
 

 
f (z) dz(5*)

(5r)

f (x)

lim
R:� �

R

�R

x dx � lim
R:�  

aR2

2
�

R2

2
 b � 0,   but   lim

b:��
b

0

x dx � �.

(5r)

�
�

��

 f (x) dx.

�
�

��

 f (x) dx � lim
R:��

R

�R
 
 f (x) dx.

���
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Fig. 374. Path C of the contour integral in (5*)

y

x–R R

S



for sufficiently large constants k and By the ML-inequality in Sec. 14.1,

Hence, as R approaches infinity, the value of the integral over S approaches zero, and (5)
and (6) yield the result

(7)

where we sum over all the residues of at the poles of in the upper half-plane.

E X A M P L E  2 An Improper Integral from 0 to 

Using (7), show that

�
�

0

dx

1 � x4
�
p

212
 .

�

f (z)f (z)

�
�

��

 f (x) dx � 2piaRes f (z)

(R 
 R0).` �
S

 
f (z) dz ` �

k

R2
  pR �

kp

R

R0.
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Fig. 375. Example 2

Solution. Indeed, has four simple poles at the points (make a sketch)

The first two of these poles lie in the upper half-plane (Fig. 375). From (4) in the last section we find the residues

(Here we used and By (1) in Sec. 13.6 and (7) in this section,

�
�

��

 
dx

1 � x4 � � 
2pi

4
 (epi>4 � e�pi>4) � �  

2pi

4
 # 2i sin 

p

4
� p sin 

p

4
�
p

12
 .

e�2pi � 1.)epi � �1

Res
z�z2    

f (z) � c 1

(1 � z4)r
 d

z�z2

� c 1

4z3  d
z�z2

�
1

4
 e�9pi>4 �

1

4
 e�pi>4.

Res
z�z1  

 f (z) � c 1

(1 � z4)r
 d

z�z1

� c 1

4z3  d
z�z1

�
1

4
 e�3pi>4 � � 

1

4
 epi>4.

z1 � epi>4,   z2 � e3pi>4,   z3 � e�3pi>4,   z4 � e�pi>4.

f (z) � 1>(1 � z4)



Since is an even function, we thus obtain, as asserted,

Fourier Integrals
The method of evaluating (4) by creating a closed contour (Fig. 374) and “blowing it up”
extends to integrals

(8) and (s real)

as they occur in connection with the Fourier integral (Sec. 11.7).
If is a rational function satisfying the assumption on the degree as for (4), we may

consider the corresponding integral

(s real and positive)

over the contour C in Fig. 374. Instead of (7) we now get

(9)

where we sum the residues of at its poles in the upper half-plane. Equating the
real and the imaginary parts on both sides of (9), we have

(10)

To establish (9), we must show [as for (4)] that the value of the integral over the
semicircle S in Fig. 374 approaches 0 as Now and S lies in the upper half-
plane Hence

From this we obtain the inequality This
reduces our present problem to that for (4). Continuing as before gives (9) and (10).

E X A M P L E  3 An Application of (10)

Show that �
�

��

 
cos sx

k2 � x2
 dx �

p

k
 e�ks,   �

�

��

 sin sx

k2 � x2
 dx � 0   (s 
 0, k 
 0).

�

ƒ f (z)eisz ƒ � ƒ f (z) ƒ ƒ eisz ƒ � ƒ f (z) ƒ  (s 
 0, y 	 0).

(s 
 0, y 	 0).ƒ eisz ƒ � ƒ eis(x�iy) ƒ � ƒ eisx ƒ ƒ e�sy ƒ � 1 # e�sy � 1

y 	 0.
s 
 0R: �.

(s 
 0)

�
�

��

 f (x) sin sx dx � 2paRe Res [ f (z)eisz ].

�
�

��
 
f (x) cos sx dx � �2pa Im Res [ f (z)eisz],

f (z)eisz

(s 
 0)�
�

��

  f (x)eisx dx � 2piaRes [ f (z)eisz]

�  
C

 
f (z)eisz dz

f (x)

�
�

��

 f (x) sin sx dx�
�

��

 
 
f (x) cos sx dx

��
�

0

 
dx

1 � x4
�

1

2
  �

�

��

  

dx

1 � x4
�
p

212
 .

1>(1 � x4)
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Solution. In fact, has only one pole in the upper half-plane, namely, a simple pole at 
and from (4) in Sec. 16.3 we obtain

Thus

Since this yields the above results [see also (15) in Sec. 11.7.]

Another Kind of Improper Integral
We consider an improper integral

(11)

whose integrand becomes infinite at a point a in the interval of integration,

By definition, this integral (11) means

(12)

where both and approach zero independently and through positive values. It may
happen that neither of these two limits exists if and go to 0 independently, but the
limit

(13)

exists. This is called the Cauchy principal value of the integral. It is written

pr. v. 

For example,

pr. v. 

the principal value exists, although the integral itself has no meaning.
In the case of simple poles on the real axis we shall obtain a formula for the principal

value of an integral from to This formula will result from the following theorem.�.��

�
1

�1

 
dx

x3
� lim

P:0  
c �

�P

�1

 
dx

x3
� �

1

P

dx

x3
 d � 0;

�
B

A

f (x) dx.

lim
P:0   
c �

a�P

A

f (x) dx � �
B

a�P

f (x) dx d

hP
hP

�
B

A

f (x) dx � lim
P:0

 �
a�P

A

f (x) dx � lim
h:0

 �
B

a�h

f (x) dx

lim
x:a  

ƒ f (x) ƒ � �.

�
B

A

f (x) dx

�eisx � cos sx � i sin sx,

�
�

��

 
eisx

k2 � x2  dx � 2pi 
e�ks

2ik
�
p

k
 e�ks.

Res
z�ik

  

eisz

k2 � z2 � c e
isz

2z
 d

z�ik

�
e�ks

2ik
 .

z � ik,eisz>(k2 � z2)
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Fig. 377. Application of Theorem 1

a + ra – r a

C
2

R

S

–R

T H E O R E M  1 Simple Poles on the Real Axis

If has a simple pole at on the real axis, then (Fig. 376)

lim
r:0

 �
C2

f (z) dz � pi Res
z�a

  f (z).

z � af (z)
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a + ra – r a

C
2

x

Fig. 376. Theorem 1

P R O O F By the definition of a simple pole (Sec. 16.2) the integrand has for 
the Laurent series

Here is analytic on the semicircle of integration (Fig. 376)

and for all z between and the x-axis, and thus bounded on say, By
integration,

The second integral on the right cannot exceed in absolute value, by the
ML-inequality (Sec. 14.1), and as 

Figure 377 shows the idea of applying Theorem 1 to obtain the principal value of the
integral of a rational function from to . For sufficiently large R the integral over
the entire contour in Fig. 377 has the value J given by times the sum of the residues
of at the singularities in the upper half-plane. We assume that satisfies the degree
condition imposed in connection with (4). Then the value of the integral over the large

f (x)f (z)
2pi

���f (x)

�r: 0.ML � Mpr: 0
Mpr

�
C2

 
f (z) dz � �

p

0

b1

reiu
 ireiu du � �

C2

 
g(z) dz � b1pi � �

C2

 
g(z) dz.

ƒg(z) ƒ � M.C2,C2

C2:  z � a � reiu,   0 � u � p

g(z)

f (z) �
b1

z � a � g(z),   b1 � Res
z�a   

f (z).

0 � ƒ z � a ƒ � Rf (z)



semicircle S approaches 0 as For the integral over (clockwise!)
approaches the value

by Theorem 1. Together this shows that the principal value P of the integral from to
plus K equals J; hence If has several simple

poles on the real axis, then K will be times the sum of the corresponding residues.
Hence the desired formula is

(14)

where the first sum extends over all poles in the upper half-plane and the second over all
poles on the real axis, the latter being simple by assumption.

E X A M P L E  4 Poles on the Real Axis

Find the principal value

pr. v.

Solution. Since

the integrand considered for complex z, has simple poles at

and at in the lower half-plane, which is of no interest here. From (14) we get the answer

pr. v. 

More integrals of the kind considered in this section are included in the problem set. Try
also your CAS, which may sometimes give you false results on complex integrals.

��
�

��

 
dx

(x2 � 3x � 2)(x2 � 1)
� 2pi a3 � i

20
 b � pi  a� 

1

2
�

1

5
 b �

p

10
 .

z � �i

 �
1

6 � 2i
�

3 � i

20
 ,

 z � i,   Res 
z�i

 f (z) � c 1

(z2 � 3z � 2)(z � i)
 d

z�i

 �
1

5
 ,

 z � 2,   Res 
z�2

 f (z) � c 1

(z � 1)(z2 � 1)
 d

z�2

 � � 
1

2
 ,

 z � 1,   Res 
z�1   

f (z) � c 1

(z � 2)(z2 � 1)
 d

z�1

f (x),

x2 � 3x � 2 � (x � 1)(x � 2),

�
�

��

 
dx

(x2 � 3x � 2)(x2 � 1)
 .

pr. v. �
�

��

 f (x) dx � 2piaRes f (z) � piaRes f (z)

�pi
f (z)P � J � K � J � pi Resz�a  f (z).�

��

K � �pi Res
z�a   

f (z)

C2r: 0R: �.
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Chaper 16 Review Questions and Problems 733

1–9 INTEGRALS INVOLVING COSINE AND SINE
Evaluate the following integrals and show the details of
your work.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10–22 IMPROPER INTEGRALS: 
INFINITE INTERVAL OF INTEGRATION

Evaluate the following integrals and show details of your
work.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20. �
�

��

 
x

8 � x3
 dx

�
�

��

 
dx

x4 � 1
�

�

��

 
cos 4x

x4 � 5x2 � 4
 dx

�
�

��

 
sin 3x

x4 � 1
 dx�

�

��

 
cos 2x

(x2 � 1)2
 dx

�
�

��

 
x2

x6 � 1
 dx�

�

��

 
x2 � 1

x4 � 1
 dx

�
�

��

 
x

(x2 � 1)(x2 � 4)
 dx�

�

��

 
dx

(x2 � 2x � 5)2

�
�

��

 
dx

(1 � x2)2�
�

��

 
dx

(1 � x2)3

�
2p

0

cos u
13 � 12 cos 2u

  du

�
2p

0

1
8 � 2 sin u

  du�
2p

0

a
a � sin u

  du

�
2p

0

sin2 u
5 � 4 cos u

  du�
2p

0

 
cos2 u

5 � 4 cos u
  du

�
2p

0
 
 

1 � 4 cos u
17 � 8 cos u

  du�
2p

0

 
1 � sin u
3 � cos u

 du

�
p

0

 
du

p � 3 cos u�
p

0

 
2 du

k � cos u

21.

22.

23–26 IMPROPER INTEGRALS: 
POLES ON THE REAL AXIS

Find the Cauchy principal value (showing details):

23. 24.

25. 26.

27. CAS EXPERIMENT. Simple Poles on the Real
Axis. Experiment with integrals 

real and
all different, Conjecture that the principal value
of these integrals is 0. Try to prove this for a special
k, say, For general k.

28. TEAM PROJECT. Comments on Real Integrals. 
(a) Formula (10) follows from (9). Give the details.

(b) Use of auxiliary results. Integrating around
the boundary C of the rectangle with vertices 

letting and using

show that

(This integral is needed in heat conduction in Sec.
12.7.)

(c) Inspection. Solve Probs. 13 and 17 without
calculation.

�
�

0

e�x2

cos 2bx dx �
1p

2
 e�b2

.

�
�

0

e�x2

dx �
1p

2
 ,

a: �,a � ib, �a � ib,
�a, a,

e�z2

k � 3.

k 
 1.
f (x) � [(x � a1)(x � a2) Á (x � ak)]�1, aj

��
��   f (x)  dx,

�
�

��

 
x2

x4 � 1
  dx�

�

��

 
x � 5

x3 � x
  dx

�
�

��

 
dx

x4 � 3x2 � 4
�

�

��

 
dx

x4 � 1

�
�

��

 
dx

x2 � ix

�
�

��

sin x

(x � 1)(x2 � 4)
 dx

P R O B L E M  S E T  1 6 . 4

1. What is a Laurent series? Its principal part? Its use?
Give simple examples.

2. What kind of singularities did we discuss? Give defi-
nitions and examples.

3. What is the residue? Its role in integration? Explain
methods to obtain it.

4. Can the residue at a singularity be zero? At a simple
pole? Give reason.

5. State the residue theorem and the idea of its proof from
memory.

6. How did we evaluate real integrals by residue integration?
How did we obtain the closed paths needed?

C H A P T E R  1 6  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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7. What are improper integrals? Their principal value?
Why did they occur in this chapter?

8. What do you know about zeros of analytic functions?
Give examples.

9. What is the extended complex plane? The Riemann
sphere R? Sketch on R.

10. What is an entire function? Can it be analytic at
infinity? Explain the definitions.

11–18 COMPLEX INTEGRALS

Integrate counterclockwise around C. Show the details.

11.

12.

13.

14.

15.
25z2

(z � 5)2
 , C:  ƒ z � 5 ƒ � 1

5z3

z2 � 4
 , C: ƒ z � i ƒ � pi>2

5z3

z2 � 4
 , C: ƒ z ƒ � 3

e2>z, C: ƒ z � 1 � i ƒ � 2

sin 3z

z2
 , C: ƒ z ƒ � p

z � 1 � i

16.

17.

18.

19–25 REAL INTEGRALS
Evaluate by the methods of this chapter. Show details.

19. 20.

21.

22. 23.

24. 25. �
�

��

 
cos x

x2 � 1
 dx�

�

��

 
dx

x2 � 4ix

�
�

��

 
x

(1 � x2)2
 dx�

�

��

 
dx

1 � 4x4

�
2p

0

 
sin u

34 � 16 sin u
 du

�
2p

0

 
sin u

3 � cos u
 du�

2p

0

 
du

13 � 5 sin u

cot 4z, C: ƒ z ƒ � 3
4 

cos z

zn  , n � 0, 1, 2, Á , C:  ƒ z ƒ � 1

15z � 9

z3 � 9z
 , C:  ƒ z ƒ � 4

A Laurent series is a series of the form

(1) (Sec. 16.1)

or, more briefly written [but this means the same as (1)!]

where This series converges in an open annulus (ring) A with
center In A the function is analytic. At points not in A it may have
singularities. The first series in (1) is a power series. In a given annulus, a Laurent
series of is unique, but may have different Laurent series in different annuli
with the same center.

Of particular importance is the Laurent series (1) that converges in a neighborhood
of except at itself, say, for suitable). The series0 � ƒ z � z0 ƒ � R (R 
 0,z0z0

f (z)f (z)

f (z)z0.
n � 0, �1, �2, Á .

f (z) � a
�

n���

 an(z � z0)n,  an �
1

2pi
 �

C
 
 

f (z*)

(z* � z0)n�1
 dz*(1*)

f (z) � a
�

n�0

 an(z � z0)n � a
�

n�1

 
bn

(z � z0)n

SUMMARY OF CHAPTER 16
Laurent Series. Residue Integration
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(or finite sum) of the negative powers in this Laurent series is called the principal
part of at The coefficient of in this series is called the residue
of at and is given by [see (1) and 

(2) Thus

can be used for integration as shown in (2) because it can be found from

(3) (Sec. 16.3),

provided has at a pole of order m; by definition this means that principal
part has as its highest negative power. Thus for a simple pole 

also,

If the principal part is an infinite series, the singularity of at is called an
essential singularity (Sec. 16.2).

Section 16.2 also discusses the extended complex plane, that is, the complex plane
with an improper point (“infinity”) attached.

Residue integration may also be used to evaluate certain classes of complicated
real integrals (Sec. 16.4). 

�

z0f (z)

Res
z�z0

  
p(z)

q(z)
�

p(z0)

qr(z0)
 .Res

z�z0  
 f (z) � lim

z:z0

 (z � z0) f (z);

(m � 1),1>(z � z0)m
z0f (z)

Res
z�z0  

 f (z) �
1

(m � 1)!
 lim
z:z0  
¢ dm�1

dzm�1
 [(z � z0)mf (z)]≤ ,

b1

�
C
  
f (z*) dz* � 2pi Res

z�z0  
 f (z).b1 � Res

z:z0  
f (z) �

1
2pi

  �
C
  
f (z*) dz*.

(1*)]z0f (z)
1>(z � z0)b1z0.f (z)
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C H A P T E R 1 7

Conformal Mapping

Conformal mappings are invaluable to the engineer and physicist as an aid in solving
problems in potential theory. They are a standard method for solving boundary value
problems in two-dimensional potential theory and yield rich applications in electrostatics,
heat flow, and fluid flow, as we shall see in Chapter 18.

The main feature of conformal mappings is that they are angle-preserving (except at
some critical points) and allow a geometric approach to complex analysis. More details
are as follows. Consider a complex function defined in a domain D of the z–plane;
then to each point in D there corresponds a point in the w-plane. In this way we obtain a
mapping of D onto the range of values of in the w-plane. In Sec. 17.1 we show that
if is an analytic function, then the mapping given by is a conformal mapping,
that is, it preserves angles, except at points where the derivative is zero. (Such points
are called critical points.)

Conformality appeared early in the history of construction of maps of the globe.
Such maps can be either “conformal,” that is, give directions correctly, or “equiareal,”
that is, give areas correctly except for a scale factor. However, the maps will always
be distorted because they cannot have both properties, as can be proven, see [GenRef8]
in App. 1. The designer of accurate maps then has to select which distortion to take
into account.

Our study of conformality is similar to the approach used in calculus where we study
properties of real functions and graph them. Here we study the properties of conformal
mappings (Secs. 17.1–17.4) to get a deeper understanding of the properties of functions, most
notably the ones discussed in Chap. 13. Chapter 17 ends with an introduction to Riemann
surfaces, an ingenious geometric way of dealing with multivalued complex functions such as

and 
So far we have covered two main approaches to solving problems in complex analysis.

The first one was solving complex integrals by Cauchy’s integral formula and was broadly
covered by material in Chaps. 13 and 14. The second approach was to use Laurent series
and solve complex integrals by residue integration in Chaps. 15 and 16. Now, in Chaps. 17
and 18, we develop a third approach, that is, the geometric approach of conformal mapping
to solve boundary value problems in complex analysis.

Prerequisite: Chap. 13.
Sections that may be omitted in a shorter course: 17.3 and 17.5.
References and Answers to Problems: App. 1 Part D, App. 2.

w � ln z.w � sqrt (z)

y � f (x)

f r(z)
w � f (z)f (z)

f (z)

w � f (z)
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17.1 Geometry of Analytic Functions: 
Conformal Mapping

We shall see that conformal mappings are those mappings that preserve angles, except at
critical points, and that these mappings are defined by analytic functions. A critical point
occurs wherever the derivative of such a function is zero. To arrive at these results, we
have to define terms more precisely.

A complex function

(1)

of a complex variable z gives a mapping of its domain of definition D in the complex 
z-plane into the complex w-plane or onto its range of values in that plane.1 For any point 
in D the point is called the image of with respect to f. More generally, for
the points of a curve C in D the image points form the image of C; similarly for other
point sets in D. Also, instead of the mapping by a function we shall say more
briefly the mapping .

E X A M P L E  1 Mapping 

Using polar forms and we have Comparing moduli and arguments gives
and Hence circles are mapped onto circles and rays onto rays 

Figure 378 shows this for the region which is mapped onto the region

In Cartesian coordinates we have and

Hence vertical lines are mapped onto From this we can eliminate y. We
obtain and Together,

(Fig. 379).

These parabolas open to the left. Similarly, horizontal lines are mapped onto parabolas opening
to the right,

(Fig. 379). �v2 � 4k2(k2 � u)

y � k � const

v2 � 4c2(c2 � u)

v2 � 4c2y2.y2 � c2 � u
u � c2 � y2, v � 2cy.x � c � const

u � Re (z2) � x2 � y2,   v � Im (z2) � 2xy.

z � x � iy
1 � ƒw ƒ � 9

4 , p>3 � u � 2p>3.
1 � ƒ z ƒ � 3

2 , p>6 � u � p>3,
� � 2u0 .u � u0R � r 0

2r � r0� � 2u.R � r 2
w � z2 � r 2e2iu.w � Rei�,z � reiu

w � f (x) � z2

w � f (z)
w � f (z)

z0w0 � f (z0)
z0

(z � x � iy)w � f (z) � u(x, y) � iv(x, y)

SEC. 17.1 Geometry of Analytic Functions: Conformal Mapping 737

Fig. 378. Mapping w � z2. Lines 	z	 � const, arg z � const and their images in the w-plane

1The general terminology is as follows. A mapping of a set A into a set B is called surjective or a mapping of
A onto B if every element of B is the image of at least one element of A. It is called injective or one-to-one if
different elements of A have different images in B. Finally, it is called bijective if it is both surjective and injective.
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Conformal Mapping
A mapping is called conformal if it preserves angles between oriented curves in
magnitude as well as in sense. Figure 380 shows what this means. The angle
between two intersecting curves and is defined to be the angle between their oriented
tangents at the intersection point And conformality means that the images and 
of and make the same angle as the curves themselves in both magnitude and direction.

T H E O R E M  1 Conformality of Mapping by Analytic Functions

The mapping by an analytic function f is conformal, except at critical
points, that is, points at which the derivative is zero.

P R O O F has a critical point at where and the angles are doubled (see
Fig. 378), so that conformality fails.

The idea of proof is to consider a curve

(2)

in the domain of and to show that rotates all tangents at a point (where
through the same angle. Now is tangent to C in

(2) because this is the limit of (which has the direction of the secant z1 � z0(z1 � z0)>¢t
z�(t) � dz>dt � x�(t) � iy�(t)f r(z0) � 0)

z0w � f (z)f (z)

C: z(t) � x(t) � iy(t)

f r(z) � 2z � 0z � 0,w � z2

f r
w � f (z)

C2C1

C*
2C*1z0.

C2C1

a (0 � a � p)
w � f (z)
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x =

1
2
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2

Fig. 379. Images of x � const, y � const under w � z2

Fig. 380. Curves and and their respective images 
and under a conformal mapping w ƒ(z)�C*2C*1

C2C1
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Fig. 382. Mapping by w z n�

Tangent

Curve C

z
1
 = z(t

0
 + Δt)

z
0
 = z(t

0
)

z(t
0
)

Fig. 381. Secant and tangent of the curve C

in Fig. 381) as approaches along C. The image of C is By the chain
rule, Hence the tangent direction of is given by the argument (use (9)
in Sec. 13.2)

(3)

where gives the tangent direction of C. This shows that the mapping rotates all
directions at a point in the domain of analyticity of f through the same angle arg 
which exists as long as But this means conformality, as Fig. 381 illustrates
for an angle between two curves, whose images and make the same angle (because
of the rotation). �

C*2C*1a

f r(z0) � 0.
f r(z0),z0

arg z�

arg w� � arg f r � arg z�

C*w� � f r(z(t))z�(t).
w � f (z(t)).C*z0z1
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In the remainder of this section and in the next ones we shall consider various conformal
mappings that are of practical interest, for instance, in modeling potential problems.

E X A M P L E  2 Conformality of 

The mapping is conformal, except at where For this is
shown in Fig. 378; we see that at 0 the angles are doubled. For general n the angles at 0 are multiplied by a
factor n under the mapping. Hence the sector is mapped by onto the upper half-plane 
(Fig. 382). �

v 	 0zn0 � u � p>n

n � 2wr � nzn�1 � 0.z � 0,w � zn, n � 2, 3, Á ,

w � zn

E X A M P L E  3 Mapping /z. Joukowski Airfoil

In terms of polar coordinates this mapping is

By separating the real and imaginary parts we thus obtain

where

Hence circles are mapped onto ellipses The circle is mapped
onto the segment of the u-axis. See Fig. 383.�2 � u � 2

r � 1x2>a2 � y2>b2 � 1.ƒ z ƒ � r � const � 1

a � r �
1
r

,  b � r �
1
r

.u � a cos u,  v � b sin u

w � u � iv � r (cos u � i sin u) �
1
r

 (cos u � i sin u).

w � z � 1
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Fig. 385. Mapping by w ez�
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x

v

u–1 –21 2

C

Now the derivative of w is

which is 0 at These are the points at which the mapping is not conformal. The two circles in Fig. 384
pass through The larger is mapped onto a Joukowski airfoil. The dashed circle passes through both 
and 1 and is mapped onto a curved segment.

Another interesting application of (the flow around a cylinder) will be considered in Sec. 18.4.   �w � z � 1>z

�1z � �1.
z � �1.

wr � 1 �
1

z2
�

(z � 1)(z � 1)

z2
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1 2 –2 2
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u

y

x

Fig. 383. Example 3

Fig. 384. Joukowski airfoil

x

y

π

0 0 1–1

v

u

(z-plane) (w-plane)

Fig. 386. Mapping by w ez�

E X A M P L E  4 Conformality of 

From (10) in Sec. 13.5 we have and Arg Hence maps a vertical straight line 
onto the circle and a horizontal straight line onto the ray arg The rectangle
in Fig. 385 is mapped onto a region bounded by circles and rays as shown.

The fundamental region of in the z-plane is mapped bijectively and conformally onto
the entire w-plane without the origin (because for no z). Figure 386 shows that the upper half

of the fundamental region is mapped onto the upper half-plane the left half being 
mapped inside the unit disk and the right half outside (why?). �ƒw ƒ � 1

0 � arg w � p,0 � y � p
ez � 0w � 0

ez�p � Arg z � p

w � y0.y � y0 � constƒw ƒ � ex0

x � x0 � constezz � y.ƒ ez ƒ � ex

w � ez



E X A M P L E  5 Principle of Inverse Mapping. Mapping 

Principle. The mapping by the inverse of is obtained by interchanging the roles of the 
z-plane and the w-plane in the mapping by

Now the principal value of the natural logarithm has the inverse From
Example 4 (with the notations z and w interchanged!) we know that maps the fundamental region
of the exponential function onto the z-plane without (because for every w). Hence 
maps the z-plane without the origin and cut along the negative real axis (where jumps by 
conformally onto the horizontal strip of the w-plane, where 

Since the mapping differs from by the translation (vertically upward), this
function maps the z-plane (cut as before and 0 omitted) onto the strip Similarly for each of the
infinitely many mappings The corresponding horizontal strips of width

(images of the z-plane under these mappings) together cover the whole w-plane without overlapping.

Magnification Ratio. By the definition of the derivative we have

(4)

Therefore, the mapping magnifies (or shortens) the lengths of short lines by
approximately the factor The image of a small figure conforms to the original
figure in the sense that it has approximately the same shape. However, since varies
from point to point, a large figure may have an image whose shape is quite different from
that of the original figure.

More on the Condition From (4) in Sec. 13.4 and the Cauchy–Riemann
equations we obtain

that is,

(5)

This determinant is the so-called Jacobian (Sec. 10.3) of the transformation 
written in real form Hence implies that the Jacobian
is not 0 at This condition is sufficient that the mapping in a sufficiently small
neighborhood of is one-to-one or injective (different points have different images). See
Ref. [GenRef4] in App. 1.

z0

w � f (z)z0.
f r(z0) � 0u � u(x, y), v � v(x, y).

w � f (z)

ƒ f r(z) ƒ 2 � 4 0u
0x

  0u
0y

 

0v
0x

   0v
0y

4 � 0(u, v)

0(x, y)
.

ƒ f r(z) ƒ 2 � ` 0u
0x

 � i 
0v
0x

 ` 2 � a 0u
0x
b2 � a 0v

0x
b2 �

0u
0x

  
0v
0y

 �
0u
0y

  
0v
0x

(5r)

f 	(z) � 0.

f r(z)
ƒ f r(z0) ƒ .

w � f (z)

lim
z:z0  

` f (z) � f (z0)
z � z0

` � ƒ f r(z0) ƒ .

�2p
w � ln z � Ln z � 2npi (n � 0, 1, 2, Á ).

p � v � 3p.
2piw � Ln zw � Ln z � 2pi

w � u � iv.�p � v � p
2p)u � Im Ln z

w � f (z) � Ln zew � 0z � 0
f �1

 (w) � ew
z � f �1

 (w) � ew.w � f (z) � Ln z
w � f (z).

w � f (z)z � f �1
 (w)

w � Ln z
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1. On Fig. 378. One “rectangle” and its image are colored.
Identify the images for the other “rectangles.”

2. On Example 1. Verify all calculations.

3. Mapping Draw an analog of Fig. 378 for
w � z3.

w � z3.

4. Conformality. Why do the images of the straight lines
and under a mapping by an

analytic function intersect at right angles? Same
question for the curves and 
Are there exceptional points?

arg z � const.ƒ z ƒ � const

y � constx � const

P R O B L E M  S E T 1 7 . 1



5. Experiment on Find out whether pre-
serves angles in size as well as in sense. Try to prove
your result.

6–9 MAPPING OF CURVES
Find and sketch or graph the images of the given curves
under the given mapping.

6.

7. Rotation. Curves as in Prob. 6, 

8. Reflection in the unit circle. 

9. Translation. Curves as in Prob. 6, 

10. CAS EXPERIMENT. Orthogonal Nets. Graph the
orthogonal net of the two families of level curves 
Re and Im where (a)
(b) (c) (d)

Why do these curves generally intersect at
right angles? In your work, experiment to get the best
possible graphs. Also do the same for other functions
of your own choice. Observe and record shortcomings
of your CAS and means to overcome such deficiencies.

11–20 MAPPING OF REGIONS
Sketch or graph the given region and its image under the
given mapping.

11.

12.

13.

14.

15.

16.

17.

18. �1 � x � 2, �p � y � p, w � ez

�Ln 2 � x � Ln 4, w � ez

ƒ z ƒ � 1
2 , Im z 
 0, w � 1>z

ƒ z � 1
2 ƒ � 1

2 , w � 1>z
x 	 1, w � 1>z
2 � Im z � 5, w � iz

1 � ƒ z ƒ � 3, 0 � Arg z � p>2, w � z3

ƒ z ƒ � 1
2 , �p>8 � Arg z � p>8, w � z2

(1 � iz).
f (z) � (z � i)>f (z) � 1>z2,f (z) � 1>z,

f (z) � z4,f (z) � const,f (z) � const

w � z � 2 � i

Arg z � 0, �p>4, �p>2, �3p>2
ƒ z ƒ � 1

3 , 12 , 1, 2, 3,

w � iz

x � 1, 2, 3, 4, y � 1, 2, 3, 4, w � z2

w � zw � z .
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19.

20.

21–26 FAILURE OF CONFORMALITY
Find all points at which the mapping is not conformal. Give
reason.

21. A cubic polynomial

22.

23.

24.

25.

26.

27. Magnification of Angles. Let be analytic at 
Suppose that Then the
mapping magnifies angles with vertex at by
a factor k. Illustrate this with examples for 

28. Prove the statement in Prob. 27 for general 
Hint. Use the Taylor series.

29–35 MAGNIFICATION RATIO, JACOBIAN
Find the magnification ratio M. Describe what it tells
you about the mapping. Where is ? Find the
Jacobian J.

29.

30.

31.

32.

33.

34.

35. w � Ln z

w �
z � 1

2z � 2

w � ez

w � 1>z2

w � 1>z
w � z3

w � 1
2 z2

M � 1

2, Á .
k � 1,

k � 2, 3, 4.
z0w � f (z)

f r(z0) � 0, Á , f (k�1)
 (z0) � 0.

z0.f (z)

sin pz

cosh z

exp (z5 � 80z)

z � 1
2 

4z2 � 2

z2 � 1>z2

1
2 � ƒ z ƒ � 1, 0 � u � p>2, w � Ln z

1 � ƒ z ƒ � 4, p>4 � u � 3p>4, w � Ln z

17.2 Linear Fractional Transformations 
(Möbius Transformations)

Conformal mappings can help in modeling and solving boundary value problems by first
mapping regions conformally onto another. We shall explain this for standard regions
(disks, half-planes, strips) in the next section. For this it is useful to know properties of
special basic mappings. Accordingly, let us begin with the following very important class.

The next two sections discuss linear fractional transformations. The reason for our
thorough study is that such transformations are useful in modeling and solving boundary
value problems, as we shall see in Chapter 18. The task is to get a good grasp of which



conformal mappings map certain regions conformally onto each other, such as, say
mapping a disk onto a half-plane (Sec. 17.3) and so forth. Indeed, the first step in the
modeling process of solving boundary value problems is to identify the correct conformal
mapping that is related to the “geometry” of the boundary value problem.

The following class of conformal mappings is very important. Linear fractional
transformations (or Möbius transformations) are mappings

(1)

where a, b, c, d are complex or real numbers. Differentiation gives

(2)

This motivates our requirement It implies conformality for all z and excludes
the totally uninteresting case once and for all. Special cases of (1) are

(3)

(Translations)

(Rotations)

(Linear transformations)

(Inversion in the unit circle).

E X A M P L E  1 Properties of the Inversion /z (Fig. 387)

In polar forms and the inversion is

and gives

Hence the unit circle is mapped onto the unit circle For a general
z the image can be found geometrically by marking on the segment from 0 to z and
then reflecting the mark in the real axis. (Make a sketch.)

Figure 387 shows that maps horizontal and vertical straight lines onto circles or straight lines. Even
the following is true.

maps every straight line or circle onto a circle or straight line.w � 1>z

w � 1>z

ƒw ƒ � R � 1>rw � 1>z
ƒw ƒ � R � 1; w � ei� � e�iu.ƒ z ƒ � r � 1

R �
1

r
 , � � �u.Rei� �

1

reiu  �
1

r
 e�iu

w � 1>zw � Rei�z � reiu

w � 1

 w � 1>z
 w � az � b

 w � az with ƒa ƒ � 1

 w � z � b

wr�   0
ad � bc � 0.

wr �
a(cz � d) � c(az � b)

(cz � d)2
 �

ad � bc

(cz � d)2
.

(ad � bc � 0)w �
az � b

cz � d
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Fig. 387. Mapping (Inversion) w � 1>z



Proof. Every straight line or circle in the z-plane can be written

(A, B C, D real).

gives a straight line and a circle. In terms of z and this equation becomes

Now Substitution of and multiplication by gives the equation

or, in terms of u and v,

This represents a circle (if or a straight line (if in the w-plane.

The proof in this example suggests the use of z and instead of x and y, a general principle
that is often quite useful in practice.

Surprisingly, every linear fractional transformation has the property just proved:

T H E O R E M  1 Circles and Straight Lines

Every linear fractional transformation (1) maps the totality of circles and straight
lines in the z-plane onto the totality of circles and straight lines in the w-plane.

P R O O F This is trivial for a translation or rotation, fairly obvious for a uniform expansion or
contraction, and true for as just proved. Hence it also holds for composites of
these special mappings. Now comes the key idea of the proof: represent (1) in terms of
these special mappings. When this is easy. When the representation is

where

This can be verified by substituting K, taking the common denominator and simplifying;
this yields (1). We can now set

and see from the previous formula that then This tells us that (1) is indeed
a composite of those special mappings and completes the proof.

Extended Complex Plane
The extended complex plane (the complex plane together with the point in Sec. 16.2)
can now be motivated even more naturally by linear fractional transformations as follows.

To each z for which there corresponds a unique w in (1). Now let 
Then for we have so that no w corresponds to this z. This suggests
that we let be the image of z � �d>c.w � �

cz � d � 0,z � �d>c
c � 0.cz � d � 0

�

�

w � w4 � a>c.

w1 � cz,  w2 � w1 � d,  w3 �
1

w2
,  w4 � Kw3,

K � � 
ad � bc

c .w � K 
1

cz � d  �
a
c

c � 0,c � 0,

w � 1>z,

z

�D � 0)D � 0)

A � Bu � Cv � D(u2 � v2) � 0.

A � B  

w � w

2
 � C  

w � w

2i
 � Dww � 0

wwz � 1>ww � 1>z.

Azz � B  

z � z

2
 � C  

z � z

2i
 � D � 0.

zA � 0A � 0

A (x2 � y2) � Bx � Cy � D � 0

744 CHAP. 17 Conformal Mapping



Also, the inverse mapping of (1) is obtained by solving (1) for z; this gives again a
linear fractional transformation

(4)

When then for and we let be the image of With
these settings, the linear fractional transformation (1) is now a one-to-one mapping of the
extended z-plane onto the extended w-plane. We also say that every linear fractional
transformation maps “the extended complex plane in a one-to-one manner onto itself.”

Our discussion suggests the following.

General Remark. If then the right side of (1) becomes the meaningless expression
We assign to it the value if and if 

Fixed Points
Fixed points of a mapping are points that are mapped onto themselves, are “kept
fixed” under the mapping. Thus they are obtained from

The identity mapping has every point as a fixed point. The mapping has
infinitely many fixed points, has two, a rotation has one, and a translation none
in the finite plane. (Find them in each case.) For (1), the fixed-point condition is

(5) thus

For this is a quadratic equation in z whose coefficients all vanish if and only if the
mapping is the identity mapping (in this case, Hence we have

T H E O R E M  2 Fixed Points

A linear fractional transformation, not the identity, has at most two fixed points. If
a linear fractional transformation is known to have three or more fixed points, it must
be the identity mapping 

To make our present general discussion of linear fractional transformations even more
useful from a practical point of view, we extend it by further facts and typical examples,
in the problem set as well as in the next section.

w � z.

a � d � 0, b � c � 0).w � z
c � 0

cz2 � (a � d)z � b � 0.z �
az � b

cz � d
 ,

w � z
w � 1>z

w � zw � z

w � f (z) � z.

w � f (z)

c � 0.w � �c � 0w � a>c(a # � � b)>(c # � � d).
z � �,

z � �.a>cw � a>c,cw � a � 0c � 0,

z �
dw � b

�cw � a
.
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1. Verify the calculations in the proof of Theorem 1,
including those for the case 

2. Composition of LFTs. Show that substituting a linear
fractional transformation (LFT) into an LFT gives
an LFT.

c � 0.
3. Matrices. If you are familiar with matrices,

prove that the coefficient matrices of (1) and (4) are
inverses of each other, provided that and
that the composition of LFTs corresponds to the
multiplication of the coefficient matrices.

ad � bc � 1,

2 � 2

P R O B L E M  S E T 1 7 . 2



4. Fig. 387. Find the image of under
Hint. Use formulas similar to those in

Example 1.

5. Inverse. Derive (4) from (1) and conversely.

6. Fixed points. Find the fixed points mentioned in the
text before formula (5).

7–10 INVERSE
Find the inverse Check by solving for w.

7.

8.

9.

10. w �
z � 1

2 i

�1
2 iz � 1

w �
z � i

3iz � 4

w �
z � i
z � i

w �
i

2z � 1

z(w)z � z(w).

w � 1>z.
x � k � const
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11–16 FIXED POINTS
Find the fixed points.

11.

12.

13.

14.

15.

16.

17–20 FIXED POINTS
Find all LFTs with fixed point(s).

17. 18.

19.

20. Without any fixed points

z � �i

z � �1z � 0

w �
aiz � 1

z � ai
 , a � 1

w �
iz � 4

2z � 5i

w � az � b

w � 16z5

w � z � 3i

w � (a � ib)z2

17.3 Special Linear Fractional Transformations
We continue our study of linear fractional transformations. We shall identify linear fractional
transformations

(1)

that map certain standard domains onto others. Theorem 1 (below) will give us a tool for
constructing desired linear fractional transformations.

A mapping (1) is determined by a, b, c, d, actually by the ratios of three of these constants
to the fourth because we can drop or introduce a common factor. This makes it plausible
that three conditions determine a unique mapping (1):

T H E O R E M  1 Three Points and Their Images Given

Three given distinct points can always be mapped onto three prescribed
distinct points by one, and only one, linear fractional transformation

This mapping is given implicitly by the equation

(2)

(If one of these points is the point , the quotient of the two differences containing
this point must be replaced by 1.)

P R O O F Equation (2) is of the form with linear fractional F and G. Hence
where is the inverse of F and is linear fractional (see (4) inF�1w � F�1(G(z)) � f (z),

F(w) � G(z)

�

w � w1

w � w3
 #

w2 � w3

w2 � w1
 �

z � z1

z � z3
 #

z2 � z3

z2 � z1
 .

w � f (z).
w1, w2, w3

z1, z2, z3

(ad � bc � 0)w �
az � b

cz � d



Sec. 17.2) and so is the composite (by Prob. 2 in Sec. 17.2), that is, 
is linear fractional. Now if in (2) we set on the left and on
the right, we see that

From the first column, thus Similarly, 
This proves the existence of the desired linear fractional transformation.

To prove uniqueness, let be a linear fractional transformation, which also
maps onto Thus Hence where 
Together, a mapping with the three fixed points By Theorem 2
in Sec. 17.2, this is the identity mapping, for all z. Thus for all
z, the uniqueness.

The last statement of Theorem 1 follows from the General Remark in Sec. 17.2.

Mapping of Standard Domains by Theorem 1
Using Theorem 1, we can now find linear fractional transformations of some practically
useful domains (here called “standard domains”) according to the following principle.

Principle. Prescribe three boundary points of the domain D in the z-plane.
Choose their images on the boundary of the image of D in the w-plane.
Obtain the mapping from (2). Make sure that D is mapped onto not onto its
complement. In the latter case, interchange two w-points. (Why does this help?)

D*,
D*w1, w2, w3

z1, z2, z3

�

f (z) � g(z)g�1( f (z)) � z
z1, z2, z3.g�1( f (z j)) � z j,

wj � f (z j).g�1(wj) � z j,wj � g(z j).wj,  j � 1, 2, 3.z j

w � g(z)
w3 � f (z3).

w2 � f (z2),w1 � F�1(G(z1)) � f (z1).F(w1) � G(z1),

F(w1) � 0,  F(w2) � 1,  F(w3) � �

G(z1) � 0,  G(z2) � 1,  G(z3) � �.

z � z1, z2, z3w � w1, w2, w3

w � f (z)F�1(G (z))
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Fig. 388. Linear fractional transformation in Example 1

E X A M P L E  1 Mapping of a Half-Plane onto a Disk (Fig. 388)

Find the linear fractional transformation (1) that maps onto 
respectively.

Solution. From (2) we obtain

w � (�1)

w � 1
 # �i � 1

�i � (�1)
 �

z � (�1)

z � 1
 # 0 � 1

0 � (�1)
 ,

w3 � 1,
w1 � �1, w2 � �i,z1 � �1, z2 � 0, z3 � 1



thus

Let us show that we can determine the specific properties of such a mapping without much calculation. For
we have thus so that the x-axis maps onto the unit circle. Since 

gives the upper half-plane maps onto the interior of that circle and the lower half-plane onto the exterior.
go onto so that the positive imaginary axis maps onto the segment S:

The vertical lines map onto circles (by Theorem 1, Sec. 17.2) through (the image of ) and
perpendicular to (by conformality; see Fig. 388). Similarly, the horizontal lines map onto
circles through and perpendicular to S (by conformality). Figure 388 gives these circles for and for

they lie outside the unit disk shown.

E X A M P L E  2 Occurrence of 

Determine the linear fractional transformation that maps onto 
respectively.

Solution. From (2) we obtain the desired mapping

This is sometimes called the Cayley transformation.2 In this case, (2) gave at first the quotient 
which we had to replace by 1.

E X A M P L E  3 Mapping of a Disk onto a Half-Plane

Find the linear fractional transformation that maps onto 
respectively, such that the unit disk is mapped onto the right half-plane. (Sketch disk and half-plane.)

Solution. From (2) we obtain, after replacing by 1,

Mapping half-planes onto half-planes is another task of practical interest. For instance,
we may wish to map the upper half-plane onto the upper half-plane Then
the x-axis must be mapped onto the u-axis.

E X A M P L E  4 Mapping of a Half-Plane onto a Half-Plane

Find the linear fractional transformation that maps onto 
respectively.

Solution. You may verify that (2) gives the mapping function

What is the image of the x-axis? Of the y-axis?

Mappings of disks onto disks is a third class of practical problems. We may readily
verify that the unit disk in the z-plane is mapped onto the unit disk in the w-plane by the
following function, which maps onto the center w � 0.z0

�

w �
z � 1

2z � 4

w1 � �, w2 � 1
4 , w3 � 3

8 ,z1 � �2, z2 � 0, z3 � 2

v 	 0.y 	 0

�w � �  

z � 1

z � 1
 .

(i � �)>(w � �)

w1 � 0, w2 � i, w3 � �,z1 � �1, z2 � i, z3 � 1

�
(1 � �)>(z � �),

w �
z � i

z � i
 .

w3 � 1,
w1 � �1, w2 � �i,z1 � 0, z2 � 1, z3 � �

�

�y � 0
y 	 0,w � i

y � constƒw ƒ � 1
z � �w � ix � const

u � 0, �1 � v � 1.w � �i, 0, i,z � 0, i, �
w � 0,

z � iƒw ƒ � 1,w � (x � i)>(�ix � 1),z � x

w �
z � i

�iz � 1
 .
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2ARTHUR CAYLEY (1821–1895), English mathematician and professor at Cambridge, is known for his
important work in algebra, matrix theory, and differential equations.



(3)

To see this, take obtaining, with as in (3),

Hence

from (3), so that maps onto as claimed, with going onto 0, as the
numerator in (3) shows.

Formula (3) is illustrated by the following example. Another interesting case will be
given in Prob. 17 of Sec. 18.2.

E X A M P L E  5 Mapping of the Unit Disk onto the Unit Disk

Taking in (3), we obtain (verify!)

(Fig. 389). �w �
2z � 1

z � 2

z0 � 1
2 

z0ƒw ƒ � 1,ƒ z ƒ � 1

ƒw ƒ � ƒ z � z0 ƒ > ƒ cz � 1 ƒ � 1

 � ƒ zz � cz ƒ � ƒ1 � cz ƒ � ƒ cz � 1 ƒ .

 � ƒ z ƒ  ƒ z � c ƒ

 ƒ z � z0 ƒ � ƒ z � c ƒ

c � z0ƒ z ƒ � 1,

ƒ z0 ƒ � 1.c � z0,w �
z � z0

cz � 1
 ,
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Fig. 389. Mapping in Example 5

E X A M P L E  6 Mapping of an Angular Region onto the Unit Disk

Certain mapping problems can be solved by combining linear fractional transformations with others. For instance,
to map the angular region D: (Fig. 390) onto the unit disk we may map D by

onto the right Z-half-plane and then the latter onto the disk by

combined �w � i  

z3 � 1

z3 � 1
  .w � i  

Z � 1

Z � 1
  ,

ƒw ƒ � 1Z � z3
ƒw ƒ � 1,�p>6 � arg z � p>6



This is the end of our discussion of linear fractional transformations. In the next section
we turn to conformal mappings by other analytic functions (sine, cosine, etc.).
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/6π

(z-plane) (Z -plane) (w-plane)

Fig. 390. Mapping in Example 6

1. CAS EXPERIMENT. Linear Fractional Transfor-
mations (LFTs). (a) Graph typical regions (squares,
disks, etc.) and their images under the LFTs in
Examples 1–5 of the text.

(b) Make an experimental study of the continuous
dependence of LFTs on their coefficients. For instance,
change the LFT in Example 4 continuously and graph
the changing image of a fixed region (applying animation
if available).

2. Inverse. Find the inverse of the mapping in Example 1.
Show that under that inverse the lines are
the images of circles in the w-plane with centers on the
line 

3. Inverse. If is any transformation that has an
inverse, prove the (trivial!) fact that f and its inverse
have the same fixed points.

4. Obtain the mapping in Example 1 of this section from
Prob. 18 in Problem Set 17.2.

5. Derive the mapping in Example 2 from (2).

6. Derive the mapping in Example 4 from (2). Find its
inverse and the fixed points.

7. Verify the formula for disks.

w � f (z)

v � 1.

x � const

8–16 LFTs FROM THREE POINTS AND IMAGES 
Find the LFT that maps the given three points onto the three
given points in the respective order.

8. 0, 1, 2 onto 

9. onto 

10. onto 

11. onto 

12. onto 

13. onto 

14. onto 

15. onto 

16. onto 

17. Find an LFT that maps onto so that
is mapped onto Sketch the images of

the lines and 

18. Find all LFTs that map the x-axis onto the u-axis.

19. Find an analytic function that maps the region
onto the unit disk 

20. Find an analytic function that maps the second quadrant
of the z-plane onto the interior of the unit circle in the
w-plane.

ƒw ƒ � 1.0 � arg z � p>4
w � f (z)

w(z)

y � const.x � const
w � 0.z � i>2

ƒw ƒ � 1ƒ z ƒ � 1

0, 32 ,  1�3
2 ,  0,  1

0, �i � 1, �1
2 1,  i,  2

1, 1 � i,  1 � 2i�1, 0, 1

�,  1, 00, 1, �

�1, 0, �0, 2i,  �2i

�i,  �1, i�1, 0, 1

�1, 0, �0, �i,  i

i,  �1, �i1, i,  �1

1, 12 ,  13 
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17.4 Conformal Mapping by Other Functions
We shall now cover mappings by trigonometric and hyperbolic analytic functions. So far
we have covered the mappings by and (Sec. 17.1) as well as linear fractional
transformations (Secs. 17.2 and 17.3).

Sine Function. Figure 391 shows the mapping by

(1) (Sec. 13.6).w � u � iv � sin z � sin x cosh y � i cos x sinh y

ezzn



Hence

(2)

Since is periodic with period the mapping is certainly not one-to-one if we
consider it in the full z-plane. We restrict z to the vertical strip in
Fig. 391. Since at the mapping is not conformal at these two
critical points. We claim that the rectangular net of straight lines and 
in Fig. 391 is mapped onto a net in the w-plane consisting of hyperbolas (the images of
the vertical lines and ellipses (the images of the horizontal lines 
intersecting the hyperbolas at right angles (conformality!). Corresponding calculations are
simple. From (2) and the relations and we
obtain

(Hyperbolas)

(Ellipses).

Exceptions are the vertical lines which are “folded” onto and
respectively.

Figure 392 illustrates this further. The upper and lower sides of the rectangle are mapped
onto semi-ellipses and the vertical sides onto and 

respectively. An application to a potential problem will be given in Prob. 3 of
Sec. 18.2.
(v � 0),

1 � u � cosh 1�cosh 1 � u � �1

u 	 1 (v � 0),
u � �1x � � 

1
2 px � 1

2 p,

u2

cosh2 y
 �

v2

sinh2 y
 � sin2 x � cos2 x � 1

u2

sin2 x
 �

v2

cos2 x
 � cosh2 y � sinh2 y � 1

cosh2 y � sinh2 y � 1sin2 x � cos2 x � 1

y � const)x � const)

y � constx � const
z � �1

2 p,f r(z) � cos z � 0
S: �1

2 p � x � 1
2 p

2p,sin z

v � cos x sinh y.u � sin x cosh y,
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Fig. 391. Mapping w � u � iv � sin z

y

x

v

u
A

BC

D

E F

1

–1

C*
E*

B*
F*

D* A*
1–1π

2
π
2

–

Fig. 392. Mapping by w � sin z



Cosine Function. The mapping could be discussed independently, but since

(3)

we see at once that this is the same mapping as preceded by a translation to the right
through units.

Hyperbolic Sine. Since

(4)

the mapping is a counterclockwise rotation through (i.e., followed by the
sine mapping followed by a clockwise -rotation 

Hyperbolic Cosine. This function

(5)

defines a mapping that is a rotation followed by the mapping 
Figure 393 shows the mapping of a semi-infinite strip onto a half-plane by 

Since the point is mapped onto For real is
real and increases with increasing x in a monotone fashion, starting from 1. Hence the
positive x-axis is mapped onto the portion of the u-axis.

For pure imaginary we have Hence the left boundary of the strip
is mapped onto the segment of the u-axis, the point corresponding to

On the upper boundary of the strip, and since and it
follows that this part of the boundary is mapped onto the portion of the u-axis.
Hence the boundary of the strip is mapped onto the u-axis. It is not difficult to see that
the interior of the strip is mapped onto the upper half of the w-plane, and the mapping is
one-to-one.

This mapping in Fig. 393 has applications in potential theory, as we shall see in Prob. 12
of Sec. 18.3.

u � �1
cos p � �1,sin p � 0y � p,

w � cosh ip � cos p � �1.

z � pi1 	 u 	 �1
cosh iy � cos y.z � iy

u 	 1

z � x 	 0, cosh zw � 1.z � 0cosh 0 � 1,
w � cosh z.

w � cos Z.Z � iz

w � cosh z � cos (iz)

w � �iZ*.90°Z* � sin Z,
90°),1

2 
pZ � iz

w � sinh z � �i sin (iz),

1
2p

sin z

w � cos z � sin  (z � 1
2 p),

w � cos z
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π

Fig. 393. Mapping by w � cosh z

Tangent Function. Figure 394 shows the mapping of a vertical infinite strip onto the
unit circle by accomplished in three steps as suggested by the representation
(Sec. 13.6)

w � tan z �
sin z

cos z
 �

(eiz � e�iz)>i
eiz � e�iz  �

(e2iz � 1)>i
e2iz � 1

 .

w � tan z,



Hence if we set and use we have

(6)

We now see that is a linear fractional transformation preceded by an exponential
mapping (see Sec. 17.1) and followed by a clockwise rotation through an angle 

The strip is and we show that it is mapped onto the unit disk in
the w-plane. Since we see from (10) in Sec. 13.5 that 

Hence the vertical lines are mapped onto the rays
respectively. Hence S is mapped onto the right Z-half-plane. Also

if and if Hence the upper half of S is mapped inside
the unit circle and the lower half of S outside as shown in Fig. 394.

Now comes the linear fractional transformation in (6), which we denote by 

(7)

For real Z this is real. Hence the real Z-axis is mapped onto the real W-axis. Furthermore,
the imaginary Z-axis is mapped onto the unit circle because for pure imaginary

we get from (7)

The right Z-half-plane is mapped inside this unit circle not outside, because
has its image inside that circle. Finally, the unit circle is mapped

onto the imaginary W-axis, because this circle is so that (7) gives a pure imaginary
expression, namely,

From the W-plane we get to the w-plane simply by a clockwise rotation through see (6).
Together we have shown that maps onto the unit

disk with the four quarters of S mapped as indicated in Fig. 394. This mapping
is conformal and one-to-one.

ƒw ƒ � 1,
S: �p>4 � Re z � p>4w � tan z

p>2;

g(ei�) �
ei� � 1

ei� � 1
 �

ei�>2 � e�i�>2

ei�>2 � e�i�>2  �
i sin (�>2)

cos (�>2)
 .

Z � ei�,
ƒZ ƒ � 1g(1) � 0Z � 1

ƒW ƒ � 1,

ƒW ƒ � ƒg(iY) ƒ � ` iY � 1
iY � 1

 ` � 1.

Z � iY
ƒW ƒ � 1

W � g(Z) �
Z � 1
Z � 1

 .

g(Z):
ƒZ ƒ � 1,ƒZ ƒ � 1

y � 0.ƒZ ƒ 
 1y 
 0ƒZ ƒ � e�2y � 1
Arg Z � �p>2, 0, p>2,

x � �p>4, 0, p>4Arg Z � 2x.
ƒZ ƒ � e�2y,Z � e2iz � e�2y�2ix,

S : � 
1
4 p � x � 1

4 p,

1
2p(90°).

w � tan z

Z � e2iz.W �
Z � 1
Z � 1

 ,w � tan z � �iW,

1>i � �i,Z � e2iz

SEC. 17.4 Conformal Mapping by Other Functions 753

y

x

v

u

(z-plane) (Z-plane) (W-plane) (w-plane)

Fig. 394. Mapping by w � tan z



17.5 Riemann Surfaces. Optional
One of the simplest but most ingeneous ideas in complex analysis is that of Riemann
surfaces. They allow multivalued relations, such as or to become
single-valued and therefore functions in the usual sense. This works because the Riemann
surfaces consist of several sheets that are connected at certain points (called branch points).
Thus will need two sheets, being single-valued on each sheet. How many sheets
do you think needs? Can you guess, by recalling Sec. 13.7? (The answer will
be given at the end of this section). Let us start our systematic discussion.

The mapping given by

(1) (Sec. 17.1)w � u � iv � z2

w � ln z
w � 1z

w � ln z,w � 1z
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CONFORMAL MAPPING 

1. Find the image of under

2. Find the image of under

3–7 Find and sketch the image of the given region
under 

3.

4.

5.

6.

7.

8. CAS EXPERIMENT. Conformal Mapping. If your
CAS can do conformal mapping, use it to solve Prob. 7.
Then increase y beyond say, to or State
what you expected. See what you get as the image.
Explain.

CONFORMAL MAPPING 

9. Find the points at which is not conformal.

10. Sketch or graph the images of the lines 
under the mapping 

11–14 Find and sketch or graph the image of the given
region under 

11.

12.

13.

14.

15. Describe the mapping in terms of the map-
ping and rotations and translations.

16. Find all points at which the mapping is
not conformal.

w � cosh 2pz

w � sin z
w � cosh z

0 � x � p>6, �� � y � �

0 � x � 2p, 1 � y � 3

�p>4 � x � p>4, 0 � y � 1

0 � x � p>2, 0 � y � 2

w � sin z.

w � sin z.�p>2�p>3,
�p>6,x � 0,

w � sin z

w � sin z

100p.50pp,

0 � x � 1, 0 � y � p

0 � x � �, 0 � y � p>2
�� � x � �, 0 � y � 2p

0 � x � 1, 1
2 � y � 1

�1
2 � x � 1

2 , �p � y � p

w � ez.

w � ez.
y � k � const,  �� � x � �,

w � ez.
x � c � const, �p � y � p,

w � ez 17. Find an analytic function that maps the region R
bounded by the positive x- and y-semi-axes and the
hyperbola in the first quadrant onto the upper
half-plane. Hint. First map R onto a horizontal strip.

CONFORMAL MAPPING 

18. Find the images of the lines under the
mapping 

19. Find the images of the lines under the
mapping 

20–23 Find and sketch or graph the image of the given
region under the mapping 

20.

21. directly and from Prob. 11

22.

23.

24. Find and sketch the image of the region 
under the mapping 

25. Show that maps the upper half-plane

onto the horizontal strip as shown in
the figure.

0 � Im w � p

w � Ln 
z � 1

z � 1

w � Ln z.p>4 � u � p>2
2 � ƒ z ƒ � 3,

p � x � 2p, y � 0

�1 � x � 1, 0 � y � 1

0 � x � p>2, 0 � y � 2

0 � x � 2p, 1
2 � y � 1

w � cos z.

w � cos z.
x � c � const

w � cos z.
y � k � const

w � cos z

xy � p

P R O B L E M  S E T 1 7 . 4

BA C D E

0 1–1
(z-plane)

(∞) (∞)

C*

0
(w-plane)

E* = A*D*(∞) B*(∞)

πi

Problem 25



is conformal, except at where At angles are doubled under
the mapping. Thus the right z-half-plane (including the positive y-axis) is mapped onto
the full w-plane, cut along the negative half of the u-axis; this mapping is one-to-one.
Similarly for the left z-half-plane (including the negative y-axis). Hence the image of the
full z-plane under “covers the w-plane twice” in the sense that every is the
image of two z-points; if is one, the other is For example, and are both
mapped onto 

Now comes the crucial idea. We place those two copies of the cut w-plane upon each
other so that the upper sheet is the image of the right half z-plane R and the lower sheet
is the image of the left half z-plane L. We join the two sheets crosswise along the cuts
(along the negative u-axis) so that if z moves from R to L, its image can move from the
upper to the lower sheet. The two origins are fastened together because is the image
of just one z-point, The surface obtained is called a Riemann surface (Fig. 395a).

is called a “winding point” or branch point. maps the full z-plane onto
this surface in a one-to-one manner.

By interchanging the roles of the variables z and w it follows that the double-valued
relation

(2) (Sec. 13.2)

becomes single-valued on the Riemann surface in Fig. 395a, that is, a function in the usual
sense. We can let the upper sheet correspond to the principal value of Its image is
the right w-half-plane. The other sheet is then mapped onto the left w-half-plane.

1z.

w � 1z

w � z2w � 0
z � 0.

w � 0

w � �1.
�iz � i�z1.z1

w � 0w � z2

z � 0,wr � 2z � 0,z � 0,
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(a)  Riemann surface of z (b)  Riemann surface of z
3

Fig. 395. Riemann surfaces

Similarly, the triple-valued relation becomes single-valued on the three-sheeted
Riemann surface in Fig. 395b, which also has a branch point at 

The infinitely many-valued natural logarithm (Sec. 13.7)

becomes single-valued on a Riemann surface consisting of infinitely many sheets,
corresponds to one of them. This sheet is cut along the negative x-axis and the

upper edge of the slit is joined to the lower edge of the next sheet, which corresponds to
the argument that is, to

The principal value Ln z maps its sheet onto the horizontal strip The
function maps its sheet onto the neighboring strip and so
on. The mapping of the points of the Riemann surface onto the points of the w-plane
is one-to-one. See also Example 5 in Sec. 17.1.

z � 0
p � v � 3p,w � Ln z � 2pi

�p � v � p.

w � Ln z � 2pi.

p � u � 3p,

w � Ln z

(n � 0, �1, �2, Á )w � ln z � Ln z � 2npi

z � 0.
w � 13 z
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1. If z moves from twice around the circle 
what does do?

2. Show that the Riemann surface of 
has branch points at 1 and 2 sheets,

which we may cut and join crosswise from 1 to 2.
Hint. Introduce polar coordinates and

so that 

3. Make a sketch, similar to Fig. 395, of the Riemann
surface of w � 14 z � 1.

w � 1r1r2 ei(u1�u2)>2.z � 2 � r2eiu2,
z � 1 � r1eiu1

1(z � 1)(z � 2)
w �

w � 1z
ƒ z ƒ � 1

4 ,z � 1
4 4–10 RIEMANN SURFACES

Find the branch points and the number of sheets of the
Riemann surface.

4. 5.

6. 7.

8. 9.

10. 2(4 � z2)(1 � z2)

2z3 � ze1z, 2ez

2
n

z � z0ln (6z � 2i)

z2 � 23 4z � i1iz � 2 � i

P R O B L E M  S E T  1 7 . 5

1. What is a conformal mapping? Why does it occur in
complex analysis?

2. At what points are and not
conformal?

3. What happens to angles at under a mapping 
if 

4. What is a linear fractional transformation? What can
you do with it? List special cases.

5. What is the extended complex plane? Ways of intro-
ducing it?

6. What is a fixed point of a mapping? Its role in this
chapter? Give examples.

7. How would you find the image of under
?

8. Can you remember mapping properties of 

9. What mapping gave the Joukowski airfoil? Explain
details.

10. What is a Riemann surface? Its motivation? Its simplest
example.

11–16 MAPPING 
Find and sketch the image of the given region or curve
under 

11.

12.

13. 14.

15. 16.

17–22 MAPPING w � 1/z
Find and sketch the image of the given region or curve
under .

17.

18.

19. 20. 0 � arg z � p>42 � ƒ z ƒ � 3, y 
 0

ƒ z ƒ � 1, 0 � arg z � p>2
ƒ z ƒ � 1

w � 1>z

y � �2, 2x � �1, 1

0 � y � 2�4 � xy � 4

1>1p � ƒ z ƒ � 1p, 0 � arg z � p>2
1 � ƒ z ƒ � 2, ƒ arg z ƒ � p>8

w � z2.

w � z2

w � ln z?

w � iz, z2, ez, 1>z
x � Re z � 1

f r(z0) � 0,  f s (z0) � 0, f t  (z0) � 0?
w � f (z)z0

w � cos (pz2)w � z5 � z

21.

22.

23–28 LINEAR FRACTIONAL
TRANSFORMATIONS (LFTs)

Find the LFT that maps

23. onto respectively

24. onto respectively

25. onto respectively

26. onto respectively

27. onto respectively

28. onto respectively

29–34 FIXED POINTS
Find the fixed points of the mapping

29. 30.

31. 32.

33.

34.

35–40 GIVEN REGIONS
Find an analytic function that maps

35. The infinite strip onto the upper half-
plane 

36. The quarter-disk onto the exterior
of the unit circle 

37. The sector onto the region 

38. The interior of the unit circle onto the exterior
of the circle 

39. The region onto the strip 

40. The semi-disk onto the exterior of the
circle ƒw � p ƒ � p.

ƒ z ƒ � 2, y 
 0

v � 1.
0 �x 
 0, y 
 0, xy � c

ƒw � 2 ƒ � 2.
ƒ z ƒ � 1

u � 1.0 � arg z � p>2
ƒw ƒ � 1.
ƒ z ƒ � 1, x 
 0, y 
 0

v 
 0.
0 � y � p>4

w � f (z)

w � (iz � 5)>(5z � i)

w � z5 � 10z3 � 10z

(2iz � 1)>(z � 2i)w � (3z � 2)>(z � 1)

w � z4 � z � 64w � (2 � i)z

1 � i, 2, 0,�1, �i, i

�, 1, 0,0, 1, �

2i, 1 � 2i, 2 � 2i,0, 1, 2

i, �1, 1,1, i, �i

�, 12 , 14 ,0, 2, 4

4 � 3i, 5i>2, 4 � 3i,�1, 0, 1

z � 1 � iy (�� � y � �)

(x � 1
2 )2 � y2 � 1

4 , y 
 0
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Summary of Chapter 17 757

A complex function gives a mapping of its domain of definition in the
complex z-plane onto its range of values in the complex w-plane. If is analytic,
this mapping is conformal, that is, angle-preserving: the images of any two
intersecting curves make the same angle of intersection, in both magnitude and sense,
as the curves themselves (Sec. 17.1). Exceptions are the points at which 
(“critical points,” e.g. for 

For mapping properties of etc. see Secs. 17.1 and 17.4.
Linear fractional transformations, also called Möbius transformations

(1) (Secs. 17.2, 17.3)

map the extended complex plane (Sec. 17.2) onto itself. They solve
the problems of mapping half-planes onto half-planes or disks, and disks onto disks
or half-planes. Prescribing the images of three points determines (1) uniquely.

Riemann surfaces (Sec. 17.5) consist of several sheets connected at certain points
called branch points. On them, multivalued relations become single-valued, that is,
functions in the usual sense. Examples. For we need two sheets (with branch
point 0) since this relation is doubly-valued. For we need infinitely many
sheets since this relation is infinitely many-valued (see Sec. 13.7).

w � ln z
w � 1z

(ad � bc � 0)

w �
az � b

cz � d

ez, cos z, sin z
w � z2).z � 0

f r(z) � 0

f (z)
w � f (z)

SUMMARY OF CHAPTER 17
Conformal Mapping


