THREE
L?-SPACES

Convex Functions and Inequalities

Many of the most common inequalities in analysis have their origin in the notion
of convexity.

3.1 Definition A real function ¢ defined on a segment (a, b), where
-0 £ a < b < o, is called convex if the inequality
o((1 — AHx + 4y) < (1 = Do(x) + 19(y) (1)

holds whenevera< x < b,a<y<b,and0 <A< L

Graphically, the condition is that if x <t < y, then the point (¢, ¢(¢))
should lie below or on the line connecting the points (x, ¢(x)) and (y, ¢(y)) in
the plane. Also, (1) is equivalent to the requirement that

) @

jear 1icorem for differentiation, combined with (2), shows imme-
diately that real differentiable function ¢ is convex in (a, b) if and only if
a<s<t<bimplies ¢'(s) < ¢'(t), i.e., if and only if the derivative ¢’ is a mono-
tonically increasing function.

For example, the exponential function is convex on (— co, o).

3.2 Theorem If ¢ is convex on (a, b) then ¢ is continuous on (a, b).

61



62 REAL AND COMPLEX ANALYSIS

ProoF The idea of the proof is most easily conveyed in geometric language.
Those who may worry that this is not “rigorous” are invited to transcribe it
in terms of epsilons and deltas.

Suppose a<s<x <y<t<b Write § for the point (s, ¢(s)) in the
plane, and deal similarly with x, y, and t. Then X is on or below the line SY,

Lhan~a Vic an ar oahave tha lima theaas Cond YV-alan Vic an aor halaw YT
HCLIvY 1 lD Uil V1L aUUVU Lilv 11110 ‘.llluusll D aAallu A, aidyv, 1 io Vil VUL UuIUY A1,

As y— x, it follows that Y — X ie., ¢(y)— ¢(x). Left-hand limits are handled
in the same manner, and the continuity of ¢ follows. ////

Note that this theorem depends on the fact that we are working on an open

[0, 1] without being continuous.

3.3 Theorem (Jensen’s Inequality) Let u be a positive measure on a o-algebra
M in a set Q, so that p(Q) = 1. If fis a real function in }(u), if a <f(x) < b for

’ ] ’

<P(Lfdu) < L(fp o f) dp. (1)

Note: The cases a = — oo and b = o are not excluded. It may happen that ¢ o f
is not in I}(u); in that case, as the proof will show, the integral of ¢ o f exists in

tandad canca Asncmrilens - Qo

3 3 Alas
he extended sense described in Sec. 1. 31 and its value is ~+ 00.

PrROOF Putt =f, fdu Then a <t < b. If B is the supremum of the quotients
on the left of 3.1(2), where a <s <t, then B is no larger than any of the
quotients on the right of 3.1(2), for any u € (¢, b). It follows that

o) =)+ Ps—1 (a<s<d) (2

o(f(x) — o(t) = B(f(x) =) 2 0 3

for every x € Q. Since ¢ is continuous, @ o f is measurable. If we integrate
both sides of (3) with respect to u, (1) follows from our choice of ¢ and the
assumption p(Q) = 1. /1]

i

To give an example, take ¢(x) = e*. Then (1) becomes

exp {‘.fdu} < [ef dp. @
If Q is a finite set, consisting of points py, ..., p,,say, and if
wl({nY = 1/n fip) = x.:
LNV 4 5 V) [Aht] J Wy [ 4
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(4) becomes

.

1 1.1, . .
exp{;(x1+-°-+x,,)}s;(e + 0+ e™), (5

for real x;. Putting y; = €*, we obtain the familiar inequality between the arith-
metic and geometric means of n positive numbers:

\1/n

Vs 1 Vs . ' N AY 77N
Wiy " ya) = PR SRR C I g Y (0)
Going back from this to (4), it should become clear why the left and right sides of

ewwloggdﬂ}s [gdu M

LJil J Ji2

are often called the geometric and arithmetic means, respectlvely, of the positive
function g.

we take u(fpW) = a. > 0. w ‘,(‘ w — 1 then wa ~htoin
If we tak € U\\pis) =% >V, 1€ 7, &; = 1, incii we ootain
V2 8 VoL I VL Bl 00 VRS I, S TSRS SO AP W R Y) ()
J1 )4 R — 1-71 M PAP 4V AR V™ n)n 7

in place of (6). These are just a few samples of what is contained in Theorem 3.3.
For a converse, see Exercise 20.

3.4 Definition If p and g are positive real numbers such that p + g = pq, or
equivalently

< <

—t-=1 (1)
p q
then we call p and g a pair of conjugate exponents. It is clear that (1) implies
1 <p<ooand 1 < g < oo. An important special case is p = g = 2.
As p— 1, (1) forces g— oo. Consequently 1 and oo are also regarded as a
pair of conjugate exponents. Many analysts denote the exponent conjugate
to p by p/, often without saying so explicitly.

3.5 Theorem Let p and q be conjugate exponents, 1 <p < co. Let X be a
measure space, with measure p. Let f and g be measurable functions on X, with

range in [0, c0]. Then

[paslraf s

and
Yur  (f Yur  (f up
U(f+g)"du} SUf”du} +Ug"du} : ¥)
X X X
e n) OSSR, £1\ 2 TX2TY 9. M o AAZ. L 1., XL . N (1N ~ o .
The inequality (1) is Holder’s; (2) is Minkowski’s. If p = g = 2, (1) is known

as the Schwarz mequallty
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ProoF Let 4 and B be the two factors on the right of (1). If A = 0, then f= 0

a.e. (by Theorem 1.39); hence fg = 0 a.e., so (1) holds. If A > 0 and B = o, (1)
is again trivial. So we need consider only the case 0 < 4 < 00, 0 < B < 0.

Put

G)

RN
SIS

This gives

rF"d;4.= fG"dy,=L 4)
X Jx

If x € X is such that 0 < F(x) < o0 and 0 < G(x) < oo, there are real

numbers s and ¢ such that F(x) = ¢"?, G(x) = €' Since 1/p + 1/q =1, the
convexity of the exponential function implies that

es/p+t/q Sp—les+ q—-let. (5)

It follows that

F(x)G(x) < p~'F(x)” + q~1G(x)* 6)
for every x € X. Integration of (6) yields
fFGdy5p1+q1—1, (7)
X
hy (A): imoarting 2\ 3 Atz £1)
oy \-r),umcxuug,\ ; UU), W€ ootain (1).
Note that (6) could also have been obtained as a special case of the
inequality 3.3(8).
To prove (2), we write
F+aP =7 (f+9P  +g-(f+a " ®)
Holder’s inequality gives
1/p l/q
Jrf- (f+g)P ! {Jf l Jr(f.g_ yp— l)ql ) (9)

Let (9) be the inequality (9) with f and g interchanged. Since (p — 1)q = p,
addition of (9) and (9') gives

{(f +9y < { ((f + g)”ym[ { f "}w + { f g"}w} (10)

Clearly, it is enough to prove (2) in the case that the left side is
than 0 and the right side is less than co. The convexity of the functior

A AL 1ApRAE 2ILE% e izl - 2aw RS2 L2 3\

0 <t < oo shows that

(f* + g°).

VaaN
.

[\ ]

NI p—



IP-SPACES 65

Hence the left side of (2) is less than oo, and (2) follows from (10) if we divide

by the first factor on the right of (10), bearing in mind that 1 — 1/g = 1/p.
This completes the proof. /11

It is sometimes useful to know the conditions under which equality can hold
in an inequality. In many cases this information may be obtained by examining
the proof of the inequality.

FGr insfance annality halde in (N if and anlv if equ hanalde in (K far
i 8 s VY Udilltly LIVIMS x (/) 11 aunug Vil 1 Liu _y HVIUD Ik \U} U1
almost every x. In (5), equality holds if and only if s = ¢t. Hence “F? = G? a.e.” is

a necessary and sufficient condition for equality in (7), 1f (4) is assumed. In terms
of the original functions f and g, the following result is then obtained:

Assuming A < o0 and B < oo, equality holds in (1) if and only if there are

constants o and B, not both 0, such that of ? = Bg? a.e.

We leave the analogous discussion of equality in (2) as an exercise.

The I?-spaces

*11 1

In this SCC[lOIl X wiil be an aroltrary measure space with a pOSl[lVC measurc pu.

3.6 Definition If 0 < p < o0 and if fis a complex measurable function on X,
define

1/p
Ilfllp=”If|” du} (1)
LJx )
and let I?(u) consist of all ffor which
1/, < co. ()

We call || f||, the I?-norm of f.

If 1 is Lebesgue measure on R*, we write I?(R¥) instead of IP(u), as in
Sec. 2.21. If p is the counting measure on a set A, it is customary to denote
the corresponding I[?-space by £7(A), or simply by /7, if 4 is countable. An
element of /? may be regarded as a complex sequence x = {&,}, and

3.7 Definition Suppose g: X — [0, co] is measurable. Let S be the set of all
real « such that

#g~ (=« c0]) = 0. (1)
IfS =, put f = 0. If § # &, put § = inf S. Since

“Y(B, 0]) = U 9“‘Wf+l, ooD %)
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and since the union of a countable collection of sets of measure O has

measure 0, we see that § € S. We call f the essential supremum of g.

If f is a complex measurable function on X, we define | f|,, to be the
essential supremum of | f|, and we let [°(u) consist of .all f for which
Il fllo < co. The members of L*(u) are sometimes called essentially bounded

measurable functions on X.

Tt fallowe from thic definition that tho ineaualitv | flx)] < halde for almost all

JLJUHUVV.}J' UTis LIbsT U JLTsbtsUTE LIVAL LT BT RULIL Y [ J (AJ ] = v s 0 JUT BHITIVOL Wi
xifandonly if A = || fll o

Ac in DNefinitinon 16 IYRK denatec tha clace af ccentially hounded (with

£AD I A/CAILIIUIVILE JoU, s (AN ] UCIIVILD LIV viado Ul Nl iabr-3sy VU BTV | VYL

e J A
respect to Lebesgue measure) functions on R, ¢*(A) is the class of all
bounded functions on A. (Here bounded means the same as essentially bounded,

since every nonempty set has positive measure!)

3.8 Theorem If p

an onjugate exponents, 1 < p < oo, and if f € I¥(p)
and g € I!(y), then fg €

dqa
LG, and

£41

T TR TIRTIDN FEEN
Wgis = it/ iipli9llg- )

Proor For 1 < p < o0, (1) is simply Holder’s inequality, applied to | f| and
lg|. If p = o0, note that

S ()g(¥) | < 11 f Il | 9(¥)]| @

for almost all x; integrating (2), we obtain (1). If p = 1, then g = o0, and the

same argument applles. /1]

3.9 Theorem Suppose 1 < p < o0, and f e I¥(u), g € I¥(u). Then f + g € IP(u),
and

IS+ gl < 11, + ligll,- (1)

Proor For 1 < p < oo, this follows from Minkowski’s inequality, since

J-|f+g|”d#SJ.(|f|+Igl)"dﬂ-
X JX

For p=1 or p=oo, (1) is a trivial consequence of the inequality

If+gl<1fl+]4gl. 11/

3.10 Remarks Fix p, 1 < p < oo0. If f € IP(1) and « is a complex number, it is
clear that af € I”(). In fact,

lof ll, = tol IS (1)
T manitrsmrds e sxmsle T~ LW TS FEPE TS IR 7, 74
All Lulyjunelion wiu 10corem J.y, tnis Snows tnat Lo ,U) lb a comptex vecior
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Suppose f, g, and h are in I’(y). Replacing fby f—g and g by g — h in

Theorem 3.9, we obtain

If=hl, <1f—gl,+llg = hl,. 2

This suggests that a metric may be introduced in I(u) by defining the dis-
tance between f and g to be || f~gl|,. Call this distance d(f, g) for the
moment. Then 0 < d(f, g) < o0, d(f, f) =0, d(f, g) = d(g, f), and (2) shows
that the triangle inequality d(f, h) < d(f, g) + d(g, h) is satisfied. The only
other property which d should have to define a metric space is that

Al f n\ = 0 should lmnlv that f = g. In our nresent situation this need not bhe

wiJs Y SriVuiNe iiiap viiae g Yo AAX VKl PAVOWIIL JILUQUIVIL LiL1D 14

so; we have d(f,g) =0 preczsely when f(x) = g(x) for almost all x.
Let us write f~ g if and only if d(f, g) = 0. It is clear that this is an

equivalence relation in IP(x) which partitions I?(u) into equivalence classes;
each class consists of all functions which are equivalent to a given one. If F
and G are two equivalence classes, choose fe F and g € G, and define

d(F U} = uu, y), note t LuaLJ ~J1 and g~ g uupuca

so that d(F, G) is well defined.

With this definition, the set of equivalence classes is now a metric space.
Note that it is also a vector space, since f~ f, and g ~ g, implies f+ g ~
f1 + g, and of ~ of .

When I?(u) is regarded as a metric space, then the space which is really
under consideration is therefore not a space whose elements are functions, but
a space whose elements are equivalence classes of functions. For the sake of
simplicity of language, it is, however, customary to relegate this distinction to
the status of a tacit understanding and to continue to speak of I?(u) as a
space of functions. We shall follow this custom.

If { f,} is a sequence in IZ(p), if f € [¥(y), and if lim,_ , | f, —f 1, =0, we
say that {f,} converges to fin I?(u) (or that {f,} converges to fin the mean of
order p, or that {f,} is If-convergent to f). If to every € > 0 there corre-

cnande an integar N eiich that | f —f il <« caccann acn~> N and m >~ N
\’yu‘.l“o “ix ‘lltbéwl FO ) DUAWAL L1l L ”J" Jm“p I N S 2 2SS RS L VAV T O L TS I X o CRLANE 11§ A‘,

we call { f,} a Cauchy sequence in I¥(u). These definitions are exactly as in any
metric space.

It is a very important fact that I?(u) is a complete metric space, i.e., that
every Cauchy sequence in I(u) converges to an element of I#(p):

3.11 Theorem I?(u) is a complete metric space, for 1 < p < co0 and for every
positive measure L.

PROOF Assume first that 1 < p < oo. Let {f,} be a Cauchy sequence in I?(u).
There is a subsequence {f,},n, <n, < ---, such that

”fnn.l _fru "p < 2~i (l = 1’ 2’ 3’ . ) (1)
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Put

[+ o]

6= L Unes =Sl 9= X lfusi —Sul- b)

i=1

Since (1) holds, the Minkowski inequality shows that |lg,|l, < 1 for k = |,
2, 3, .... Hence an application of Fatou’s lemma to {g?} gives |g|| p < 1. In
particular, g(x) < co a.e., so that the series

ACEDNTANCEIAS) ®

converges absolutely for almost every x € X. Denote the sum of (3) by f(x),
for 1 hich (3) ; () = 0 | " F

measure zero. Since

k—1
+ N(f —fy=f (4)
Jng f Ly \Inisy Jn;il Jngo \'s
i=1
we see that
f()=lm f() ae. (5)
i— o0

Having found a function f which is the pointwise limit a.e. of {f, }, we
now have to prove that this f is the I?-limit of {f,}. Choose € > 0. There
exists an N such that || f, —f. |, <eif n > N and m > N. For every m > N,
Fatou’s lemma shows therefore that

J |f = fu|? dp < lim me | foi = S 1P dp < €”. (6)
We conclude from (6) that f— f,, € [’(u), hence that fe I’(u) [since f=
(f —fu) + f.), and finally that | f— f,.[|,— 0 as m— co. This completes the
proof for the case 1 < p < .

Ip I® (n\ H'\p nrnnf 1Q rp\uch e

oce { flica Can h v cennence in
AN PLUU 40 111 o A WwALAN

nn
upp vV lJns 0 @ Laugd Owy L AN 111

L*(w), let Ak and B, , be the sets where | fi(x)| > |l fi lo and where
| i) = fl(X)| > | fu —fm |l » and let E be the union of these sets, for k, m,
n=1,23,.... Then y(E) = 0, and on the complement of E the sequence { f,}
converges umformly to a bounded function f. Define f(x) = 0 for x € E. Then
fe L (u),and || f, — fll,— 0 as n— co. /1]

The preceding proof contains a result which is interesting enough to be
stated separately:

3.12 Theorem If 1 < p < o and if {f,} is a Cauchy sequence in I*(u), with
limit f, then {f,} has a subsequence which converges pointwise almost every-
where to f(x).
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The simple functions play an interesting role in I?(u):

3.13 Theorem Let S be the class of all complex, measurable, simple functions
on X such that

u({x: s(x) # 0}) < . (1)
If1 < p < o, then S is dense in I¥(p).
Proor First, it is clear that § < IZ(u). Suppose f > 0, f € I?(u), and let {s,} be

as in Theorem 1.17. Since 0 <s, < f, we have s, € I#(u), hence s, € S. Since
| f—s,|?P<fP, the dominated convergence theorem shows that

So far we have considered

|f=s,ll,—0 as n— co. Thus f'is in the I?-closure of S. The general case
(f complex) follows from this. - 1}/

rn\nmatm hy Contin

h e properties stated in Theorem 2

@) on any measure space. Now let X be a locally
let a g-aleebra M in Y with

AawRS vei v u QEApVULGR % 2il

nact Hausdorff snace. and

l" AaGQeSdaial oy, Gal

a4 measure on

4. For example, X might be R*, and u mlght

be Lebesgue measure on R

Under these circumstances, we have the following analogue of Theorem 3.13:

3.14 Theorem For 1 < p < 00, C(X) is dense in I¥(u).

Proor Define S as in Theorem 3.13. If s € S and € > 0, there exists a g €
C.(X) such that g(x) = s(x) except on a set of measure <e¢, and |g| < |s]
(Lusin’s theorem). Hence

g — s, < 2€'/?||s]l, - (1)

Since S is dense in I?(u), this completes the proof. /1]

3.15 Remarks Let us discuss the relations between the spaces IP(R¥) (the I?-
spaces in which the underlying measure is Lebesgue measure on R*) and the
space C.(RY) in some detail. We consider a fixed dimension k.

For every p € [1, o] we have a metric on C,(R¥); the distance between f
and g is | f— g|,. Note that this is a genuine metric, and that we do not
have to pass to equivalence classes. The point is that if two continuous func-
tions on R* are not identical, then they differ on some nonempty open set V,
and m(V) > 0, since V contains a k-cell. Thus if two members of C(R*) are
equal a.e., they are equal. It is also of interest to note that in C.(R¥) the
essential supremum is the same as the actual supremum: for f e C.(R"

Iflle = sup | f(X)]. (1)

x € Rk
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If 1 <p< oo, Theorem 3.14 says that C,(R") is dense in IP(R¥), and
Theorem 3.11 shows that I?(R¥) is complete. Thus IZ(R¥) is the completion of
the metric space which is obtained by endowing C,(R") with the I?-metric. f

The cases p = 1 and p = 2 are the ones of greatest interest. Let us state
once more, in different words, what the preceding result says if p = 1 and
k = 1; the statement shows that the Lebesgue integral is indeed the “right”
generalization of the Riemann integral:

If the distance between two continuous functions f and g, with compact
supports in R, is defined to be

["170-ao1a ®

the completion of the resulting metric space consists precisely of the Lebesgue
integrable functions on R, provided we identify any two that are equal almost

everywhere.
Urse, every metric spac i y be

viewed abstractly as equivalence classes of Cauchy sequences in S (see [26],
p. 82). The important point in the present situation is that the various I?-
completions of C.(R*) again turn out to be spaces of functions on R,

The case p = oo differs from the cases p < co0. The [*-completion of C.(R¥) is
not L*(R¥), but is Co(R¥), the space of all continuous functions on R* which “vanish
at infinity,” a concept which will be defined in Sec. 3.16. Since (1) shows that the
[®-norm coincides with the supremum norm on C.(R¥), the above assertion
about Cy(R¥) is a special case of Theorem 3.17.

3.16 Definition A complex function f on a locally compact Hausdorff space
X is said to vanish at infinity if to every € > 0O there exists a compact set
K < X such that | f(x)| < e for all x not in K.

The class of all continuous f on X which vanish at infinity is called
Co(X).

It is clear that C (X) = Cy(X), and that the two classes coincide if X is
compact. In that case we write C(X) for either of them.

3.17 Theorem If X is a locally compact Hausdorff space, then Cy(X) is the
completion of C(X), relative to the metric defined by the supremum norm
171 = sup | 1631 1)
xeX

PROOF An elementary verification shows that Cy(X) satisfies the axioms of a
metric space if the distance between f and g is taken to be {{ f — g|. We have

tn chaw that £ MV 20 Aoon S POt | ralVe 4N PRGUUPY PN _._L‘ -
WU onUw iatl (4gj © \A} lb UCIIBU lll bO\A} alid \U} ColAa) iS a Coini PICLC 1HICLIC

space.
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Given f e Cy(X) and € > 0, there is a compact set K so that | f(x)| < e

outside K. Urysohn’s lemma gives us a function g e C(X) such that
0<g<1andg(x)=1 on K. Put h = fg. Then h € CC(X) and || f— h| <e.
Thls proves (a).

To prove (b), let {f,} be a Cauchy sequence.in Cy(X), i.c., assume that .
{f.} converges uniformly. Then its pointwise limit function f is continuous.
Given € > 0, there exists an n so that | f, — f|| < €/2 and there is a compact

cot E cen that | £0\1 ~ 2/ Aanteida E Waneca | £ - -~ Antaidas EF amAd wa
€t i 50 uldi | j X)) < €/ OuUSiGC . il 1} Xy < € ouisiac n, ang we

have proved that f vanishes at infinity. Thus Cy(X) is complete. /1]

Exercises

1 Prove that the supremum of any collection of convex functions on (a, b) is convex on (a, b) (if it is

finite) and that pointwise lirits of sequences of convex functions are convex. What can you say about
upper and lower limits of sequences of convex functions?

2 If ¢ is convex on (a, b) and if Y is convex and nondecreasing on the range of ¢, prove that y o ¢ is
convex on (a, b). For ¢ > 0, show that the convexity of log ¢ implies the convexity of ¢, but not vice
versa.

3 Assume that ¢ is a continuous real function on (a, b) such that

[ ) 1 1
w(";y)%cp(xniw(y)

for all x and y € (a, b). Prove that ¢ is convex. (The conclusion does not follow if continuity is omitted
from the hypotheses.)
4 Suppose f'is a complex measurable function on X, u is a positive measure on X, and

t‘
o(p) =J IfPdu=lfIE  (0<p<oo).
X

Let E = {p: o(p) < c0}. Assume || fl| , > 0.

(a) Ifr<p<s reE andseE prove that p e E.

(b) Prove that log ¢ is convex in the interior of E and that ¢ is continuous on E.

(c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E
be any connected subset of (0, o0)?

(d) If r < p <s, prove that | f], <max([|f]l,, I|fll). Show that this implies the inclusion
L(y) N Bp) = E(p).

(e) Assume that || f}|_ < oo for some r < oo and prove that

SERREERSR RIS as ur

Ifl,— 1fle  asp— oo
5 Assume, in addition to the hypotheses of Exercise 4, that
HX)= 1.
(a) Prove that || f||, < I fll,if 0 <r <s < co.

(b) Under what conditions does it happenthat0 <r <s < and | f|l, = | fll, < 0?
(¢) Prove that [(u) o E(u) if 0 < r < s. Under what conditions do these two spaces contain the

same functions?
(d) Assume that || f||, < oo for some r > 0, and prove that

lim i f1l, —-exp”bglfldul

p—0

if exp {— o0} is defined to be 0.
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6 Let m be Lebesgue measure on [0, 1], and define || f|, with respect to m. Find all functions ® on

[0, oo) such that the relation

O(lim || f1,) = @.ﬂm

[ adY
holds for every bounded, measurable, positive f. Show first that
c®(x) + (1 — c)(1) = B(x) x>0,0<cx<).

Compare with Exercise 5(d).

7 For some measures, the relation r < s 1mp11es L(ﬂ) < I¥(u); for others, the inclusion is re vcrscd and
f+h 1
f Y

thara ara came for which ") dAaac nat cantain if v L ¢ (Giva avamnla
tnere are some 10r wniCn L{i) 4oes not \-uuuuu 1_.”4) L r# 5 UIVe cXamp:

find conditions on x under which these situations will occur.

Q A
Vo v

8 If g is a positive function on (0, 1) such that g(x)— co as x— 0, then there is a convex function h on
; U < X)—= s x— 0. True or false? Is roblem changed if (0, 1) is

replaced by (0, o0) and x — 0 is replaced by x— o0 ?

9 Suppose f is Lebesgue measurable on (0, 1), and not essentially bounded. By Exercise 4(e),

| fll,— o0 as p— co. Can |||, tend to co arbitrarily slowly? More precisely, is it true that to every

positive function ® on (0, o) such that ®(p)— co as p— oo one can find an fsuch that || f|,— oo as

p— o, but || f], < ®(p) for all sufficiently large p?

10 Suppose f, € I(y), forn=1,2,3,...,and ||f, —f|,— 0 and f,— g a.e., as n— co. What relation
exists between fand g?

11 Suppose (2) = 1, and suppose f and g are positive measurable functions on Q such that fg > 1.

Prove that
deu'J‘gduz 1.
0 N

12 Suppose u(Q) = 1 and h: Q— [0, o] is measurable. If

A= fhd,u,
o

prove that

\/1+A25Jv\/1+h2dusl+/1.
a

If u is Lebesgue measure on [0, 1] and if & is continuous, h = f*, the above inequalities have a simple
geometric interpretation. From this, conjecture (for general Q) under what conditions on h equality
can hold in either of the above inequalities, and prove your conjecture.

13 Under what conditions on f and g does equality hold in the conclusions of Theorems 3.8 and 3.97

2 LLIGCLL Wilal CONCNRILIAS Vi Rl § GOLS Chuaiany ik i (500 410

You may have to treat the cases p = 1 and p = oo separately.
14 Suppose 1 < p < o0, f € IF = IP((0, o0)), relative to Lebesgue measure, and

—

{‘x
F(x)=iJ fOd  ©<x< o)
V]

=

(a) Prove Hardy’s inequality
p '
IFl, < =2 111,

which shows that the mapping f— F carries I? into I”.
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(b) Prove that equality holds only if f=0 ae.

(c) Prove that the constant p/(p — 1) cannot be replaced by a smaller one.
(d) If f>0andfe L, prove that F ¢ L.
Suggestions: (a) Assume first that f > 0 and f € C,((0, c0)). Integration by parts gives

JwF”(x) dx= —p JmFP"‘(x)xF'(x) dx.
o 0

Note that xF’' = f — F, and apply Holder’s inequality to | F#~'f. Then derive the general case. (c)
Take f(x) = x~'? on [1, 4], f(x) = O elsewhere, for large A. See also Exercise 14, Chap. 8.
15 Suppose {a,} is a sequence of positive numbers. Prove that

L ze) =(G5) B

if 1l <p<oco.Hint: If a, > a,,,, the result can be made to follow from Exercise 14. This special case
implies the general one.
16 Prove Egoroff’s theorem: If u(X) < oo, if {f,} is a sequence of complex measurable functions
which converges pointwise at every point of X, and if € > O, there is a measurable set E < X, with
u(X — E) < €, such that {f,} converges uniformly on E.

(The conclusion is that by redefining the f, on a set of arbitrarily small measure we can convert a

pointwise convergent sequence to a uniformly convergent one; note the similarity with Lusin’s
theorem.)
Hint: Put

1
S(n, k)= [ {xilf.(x)—f,(x)l<z},

i,j>n

show that u(S(n, k))— p{X) as n— oo, for each k, and hence that there is a suitably increasing
sequence {n,} such that E = () S(n,, k) has the desired property.

Show that the theorem does not extend to o-finite spaces.

Show that the theorem does extend, with essentially the same proof, to the situation in which the
sequence {f,} is replaced by a family {f,}, where t ranges over the positive reals; the assumptions are
now that, for all x € X,

i) lim f(x) = f(x) and

t— a0

(ii) t— f{x)is continuous.
17 (@) If 0 < p < oo, put y, = max (1, 2?7 "), and show that

for arbitrary comp]cx numbers a and f.
fLY Qiionennon 10 10 o macitiva manciira an Y DN n o Fe TP £ ~ TP £ £l ao and
. \U) ouppust U lb a l}UbluVU IHiLdsuiv Uil 2, VS p << W, j T ‘_4\,,4) Jn © "‘U“h.ln\""}ﬁ.l \A) al., anda

I fal,— I, as n— co. Show that then lim | f—f£,|l, = 0, by completing the two proofs that are
sketched below.

() By Egoroff’s theorem, X = A u B in such a way th tjA {fIP<e€ pB)<oc, and f,—f
D Totnile lommn anmmliad ¢~ [ 1 £ 1P l....,l
unuU[ml_y on B. Fatou’s lemma, applied to JB 1Ja I's1€R0S

. (G) Put by =y,(If P+, 1) —1f—fa|", and use Fatou’s lemma as in the proof of Theorem
1.34.
(c) Show that the conclusion of (b) is false if the hypothesis || f,Il,— | fl, is omitted, even if
WX) < oo.
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18 Let u be a positive measure on X. A sequence {f,} of complex measurable functions on X is said

to converge in measure to the measurable function fif to every € > U there corresponds an NV such that

u{x: [ f,) —f(x)] > €}) <€

for all n > N. (This notion is of importance in probability theory.) Assume p(X) < co and prove the
following statements:

{a) Iff.(x)— f(x) a.e., then f,— f in measure.

(b) 1ff, € () and || f, — fli,— O, then f, — f in measure; here 1 < p < co.

(¢) Iff,— f in measure, then {f,} has a subsequence which converges to f a.e.

=7 ~"Jn L Qv 54 R RN 1

Investigate the converses of (a) and (b). What happens to (a), (b), and (¢} if (X) = oo, for
instance, if i is Lebesgue measure on R'?

A0 N0 ab e U
1Y PJCUIIC LIIC eddeniiai range Ol a4
numbers w such that

1 | « JUNNPPRE PP SO P | R Y
> 1 ail COmpCx

for every € > 0. Prove that R, is compact. What relation exists between the set R, and the number

1/ 1e?

Let 4, be the set of all averages

er‘riu

ME) &

where E € M and p(E) > 0. What relations exist between 4 ;and R,? Is A, always closed? Are there
measures u such that 4, is convex for every fe [°(1)? Are there measures u such that 4, fails to be
convex for some f € [°(u)?

How are these results affected if L°(u) is replaced by L'(u), for instance?

20 Suppose ¢ is a real function on R! such that

for everv real bounded meacura
for every real bounded measura

21 Call a metric space Y a completion of a metric space X if X is dense in Y and Y is complete. In
Sec. 3.15 reference was made to “the” completion of a metric space. State and prove a uniqueness
theorem which justifies this terminology.

22 Suppose X is a metric space in which every Cauchy sequence has a convergent subsequence. Does
it follow that X is complete? (See the proof of Theorem 3.11.)

23 Suppose p is a positive measure on X, u(X) < oo, fe [°(), | f|l, > 0,and

O‘,.='[!fl" de  (n=1,23,..)
X

Prove that

LTI
lim — = || fll.
o

n-*w n

24 Suppose u is a positive measure, f € I?(n), g € I7(u).
(@) If0 < p < 1, prove that

fl IS~ 1l | du < f|f~g|ﬂ dy

- v

that A(f, g) = | | f — g|? du defines a metric on I?(y), and that the resulting metric space is complete.
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() f1<p<ooand|fl,<R, g, <R, prove that
fl |f17 ~1gl”| du < 2pR"™ | f—gli,,.

Hint: Prove first, for x > 0, y > 0, that

f1x—yi* fo<p<l1
pr - yP, < -1 -1 . ’
plx —yl(xP~t 4 y27 1) ifl1 <p<oo.
ate that (a) and () establish the continuitv of the mannine f— | £1P that carries IP(1) into I
AV e ALY W) SRAANS V) WULHISLAUAR Vasv Woasv ALY WA VAV Rl ERX DI | ¥ 1 VALIRL WRRALL AWM AL\ Al — IS

25 Suppose u is a positive measure on X and f: X — (0, o) satisfies jx fdu = 1. Prove, for every
E ¢ X with 0 < y(E) < oo, that

1
] d E) log —
J;(ogf) u < W(E) Ogu(E)

and, when 0 < p < 1,

f fPdy < WE)' P

E

26 If fis a positive measurable function on [0, 1], which is larger,

1 1
Jlf(x) log f(x) dx or J f(s) ds J log f(¢) dt?



