
ORDERING COMPLEX NUMBERS. . . NOT*

If you have already begun studying complex numbers at school, you
have probably been taught that it makes no sense to say that one com-
plex number is less than another. However, there are various plausible
ways in which we might attempt to do just that. Is it really true that
none of them works? And if not, why not?

In fact, the question, “Can we order the complex numbers?” is
far too easy! It is not at all difficult to suggest what an order for the
complex numbers might mean. However, our first attempt will turn out
to be rather unsatisfactory, and we are faced with the problem of asking
a more precise question. By considering various ways in which we might
order the complex numbers we shall try to discover what properties
ought to hold in a “sensible” ordering.

Before we start, a very very brief introduction to complex numbers
for readers who have not yet met them at school. Complex numbers have
the form a+bi, where a and b are real numbers and i is a special symbol
with the property that i2 = −1. That is, i is “the square root of minus
one”. We can add and multiply complex numbers just by expanding in
the “obvious” way, collecting terms, and when possible simplifying by
remembering that i2 = −1. For example,

(2 + 3i) + (4 + 5i) = 2 + 4 + 3i + 5i = 6 + 8i

and
(2 + 3i)(4 + 5i) = 8 + 10i + 12i + 15i2

= 8 + 10i + 12i − 15 = −7 + 22i .

Complex numbers can be subtracted and divided too, but we won’t need
these for the present article so please ask your teacher. As usual, if we
add 0 to something, or multiply by 1, we normally don’t write the 0 or
1: thus, for example, 6 + i has the form a + bi with a = 6 and b = 1,
while −i is a + bi with a = 0 and b = −1. Any algebraic equality that
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is true for all real numbers is also true for all complex numbers. For
example

z1(z2 + z3) = z1z2 + z1z3 ,

as you can very easily check by substituting z1 = a + bi, z2 = c + di,
z3 = e + fi and expanding both sides. Let me emphasize that we are
talking about equalities here: as we shall show in the present article, the
situation is very different if we wish to talk about inequalities where ≤
and ≥ are used in attempting to compare complex numbers.

If you haven’t seen complex numbers before you may be – in fact,
probably should be – seriously worried: how can i2 possibly be negative?
For the present, let me just suggest: don’t worry! It works. As you know,
the square of a real number cannot be negative; but complex numbers
are not real numbers and some of their properties are different. You
might be reassured if you realise that in the fifteenth century – perhaps
even more recently – many people refused to accept the idea of negative
numbers: how can “something” be less than “nothing”? Today this
seems like a silly argument, and we understand that we can calculate
with negatives just as well as with positive numbers.

So, let’s try to come up with some way of defining one complex
number to be less than or equal to another. As a first attempt we’ll
define a + bi ≤ c + di to mean that

a ≤ c or b ≤ d .

Note that here I’m using the symbol ≤ in two different senses. When
I use it in connection with real numbers, for example, “a ≤ c ”, it just
means that a is less than or equal to c in the usual sense for real numbers
which you are very familiar with. But when I’m talking about complex
numbers, for example, “a + bi ≤ c + di ”, I am defining a hypothetical
order which may or may not turn out to be any good. Remember too
that in mathematics, “or” always means “this or that or both”, as in
the statement, “You can get a concession ticket at the movies if you are
a member of our Movie Club or under 15 years old” – they won’t knock
you back if you are a member and under 15.

Exercise. Mark the following statements true or false, if the meaning
of ≤ is as we have just defined it. (Answers are at the end of the article).



Before reading further, can you find anything unsatisfactory with this
way of ordering complex numbers?

2 + 5i ≤ 8 − i 2 + 5i ≤ 1 + 3i 8 − i ≤ 8 + 7i 8 − i ≤ 1 + 3i

Looking at the above example, you can see that 2 + 5i ≤ 8 − i

and 8 − i ≤ 1 + 3i. So you would expect that 2 + 5i ≤ 1 + 3i. But
this is false! Therefore this is not at all a satisfactory way to define an
ordering between complex numbers. The idea is that we would like to
analyse our familiar concept of ordering real numbers, find out what are
its important features, and duplicate these features, if possible, in the
complex numbers. So let’s try again.

A second attempt. Say that a + bi ≤ c + di whenever

a + b ≤ c + d .

Exercise. Mark the following statements true or false. Is there still
anything unsatisfactory about this attempt?

2 + 5i ≤ 8 − i 2 + 5i ≤ 1 + 3i 8 − i ≤ 8 + 7i 8 − i ≤ 1 + 3i

As far as we can see from the present examples, this ordering does
not have the defect of our first attempt; and in fact, it is not hard to
show that there will never be any problems in this respect, no matter
which examples we choose. However, there is a problem of a different
kind. We already know that 2 + 5i ≤ 8 − i; but it is also easy to check
that 8 − i ≤ 2 + 5i. Because of these two facts we would expect that
2 + 5i and 8 − i must be the same number: but obviously they are not,
and once again we have to regard this attempt as a failure.

The two properties that we would like, together with a third, are
summed up in the following definition. A relation ≤ on some set of

numbers (whether it is a well–known relation or one we have just made
up) is called a partial order if it has the following three properties.

(1) It is reflexive: for any a in the set, a ≤ a.

(2) It is transitive: for any a, b and c in the set, if a ≤ b and b ≤ c then
a ≤ c.

(3) It is antisymmetric: for any a and b in the set, if a ≤ b and b ≤ a

then a = b.

Examples.

• The standard order relation of ≤ among real numbers. The three
requirements are well–known facts about the real numbers.

• The divisibility relation on the positive integers: a | b means that
a is a factor of b. If you go through the definition and replace
“a ≤ b ” everywhere you see it by “a | b ”, you will find that all
three properties are still true.

• Our first attempt at defining an order on the complex numbers is
not transitive, and therefore not a partial order.

• Our second attempt is transitive, but is not a partial order because
it is not antisymmetric.

So, we are looking for a partial order on the complex numbers. As a
third attempt, define a + bi ≤ c + di to mean that

a ≤ c and b ≤ d .

Exercise. True or false?

2 + 5i ≤ 8 − i 2 + 5i ≤ 1 + 3i 8 − i ≤ 8 + 7i 8 − i ≤ 1 + 3i

It is possible to prove that this definition does give a partial order;
unfortunately it is still not good enough! We have seen above that
2 + 5i ≤ 8 − i is false, and it is easy to check that 8 − i ≤ 2 + 5i is also
false. This means that we simply cannot say which of 2+ 5i and 8− i is



the smaller, which is bad since we would like to be able to compare any

two complex numbers.

What we want is a total order: that is, a partial order which also
satisfies a fourth property.

(4) For any a and b in the set, either a ≤ b or b ≤ a (or both).

Examples.

• The order ≤ on the real numbers is a total order.

• Divisibility is not a total order because, for example, the statements
5 | 7 and 7 | 5 are both false.

• Alphabetical order (if defined carefully!) among the words of the
English language is a total order.

• It is possible to define a total order for complex numbers. . .

. . . in a fourth attempt. Say that a + bi ≤ c + di when

either a < c or a = c and b ≤ d .

This is known as the lexicographic order, and if you think about it you
can see that it is basically the same idea as alphabetical order. To
compare two words we look at their first letters: if they are different we
know which word comes first, while if they are the same then we look
at the second letters, and so on.

Exercise. With the lexicographic order, are the following true or false?

2 + 5i ≤ 8 − i 2 + 5i ≤ 1 + 3i 8 − i ≤ 8 + 7i 8 − i ≤ 1 + 3i

It is possible to prove that this is a total order – so far, so good,
but regrettably still not good enough! From our knowledge of the real
numbers we expect an order relation to interact with addition and mul-
tiplication in a suitable way.

We say that the order ≤ on some set of numbers is compatible

with addition when the following holds true:

(5) for all a, b and c in the set, if a ≤ b then a + c ≤ b + c.

The order is compatible with multiplication when

(6) for all a, b and c in the set, if a ≤ b and 0 ≤ c then ac ≤ bc.

In fact, the lexicographic order is compatible with addition, but not with
multiplication. For example, 2+5i ≤ 8− i, and 0 ≤ 1− 2i, so we should
expect

(2 + 5i)(1 − 2i) ≤ (8 − i)(1 − 2i) ,

that is, 12 + i ≤ 6 − 17i; but this is not true.

By now you’re probably getting fed up and thinking this is never
going to work; and in fact it isn’t, which is why we say that it’s impossible
to order complex numbers. What we actually mean is that if we insist
on properties (1) to (6) all being true, then it can’t be done. Let’s prove
this.

Theorem. There is no way of defining an order relation on the complex
numbers so that properties (1) to (6) are all true.

Comment. Before starting, let’s give an outline of the method. The
proof will be by contradiction. We shall assume that there is a way
of defining ≤ on the complex numbers for which (1) to (6) hold, and
we shall show that this leads to an impossible result. We’ll begin by
proving two preliminary facts (called “lemmas”). Note that we cannot
assume that we are dealing with any specific order. For example, if we
used facts about the lexicographic order, then in the end we would have
proved that the lexicographic order doesn’t work. But we know this
already, and in any case we want to prove much more. So, we must not
assume anything about our hypothetical order, other than that it obeys
laws (1) to (6).

Proof of the theorem. Assume that ≤ is an ordering on the complex
numbers for which facts (1) to (6) are true.

Lemma A. For any complex number a we have

0 ≤ a if and only if −a ≤ 0 .

Proof. Firstly, assume that 0 ≤ a. Property (5) allows us to add −a to
both sides of this inequality. Therefore −a ≤ a + (−a), that is, −a ≤ 0.



Conversely, suppose that −a ≤ 0; using property (5) again, we add a to
both sides to find 0 ≤ a.

Lemma B. If z is any complex number then 0 ≤ z2.

Proof. Since ≤ satisfies property (4) we have either 0 ≤ z or z ≤ 0.

In the first case, apply property (6) and take a = 0, b = z, c = z.
Then it is true that a ≤ b and 0 ≤ c, and so ac ≤ bc, that is, 0 ≤ z2.

In the second case take a = −z in Lemma A. Then −a ≤ 0 and so
0 ≤ a, that is, 0 ≤ −z. Use property (6) again, but this time take a = 0,
b = −z and c = −z. Again we have a ≤ b and 0 ≤ c, so ac ≤ bc, which
again shows that 0 ≤ z2.

Thus, in each case we have 0 ≤ z2.

Proof of the theorem, concluded. First, by taking z = 1 in Lemma
B we have 0 ≤ 12, that is, 0 ≤ 1; then from Lemma A we conclude
that −1 ≤ 0. On the other hand taking z = i in Lemma B tells us that
0 ≤ i2, that is, 0 ≤ −1. So we have

−1 ≤ 0 and 0 ≤ −1 ;

but now property (3) shows us that −1 = 0, which is definitely not
true! So the assumption that ≤ obeys properties (1) to (6) has led us
to an impossible conclusion, and we deduce that in fact ≤ cannot be
defined so as to satisfy these properties. More briefly: “it is impossible
to (sensibly) order complex numbers”.

Answers to exercises. (1) TFTT; (2) TFTF; (3) FFTF; (4) TFTF.
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