
Chapter C

Properties of Legendre Polynomials

C1 Definitions

The Legendre Polynomials are the everywhere regular solutions of Legendre’s Equation,

(1 − x2)u′′ − 2xu′ +mu = [(1 − x2)u′]′ +mu = 0, (C.1)

which are possible only if

m = n(n+ 1), n = 0, 1, 2, · · · . (C.2)

We write the solution for a particular value of n as Pn(x). It is a polynomial of degree n. If n is
even/odd then the polynomial is even/odd. They are normalised such that Pn(1) = 1.

P0(x) = 1,

P1(x) = x,

P2(x) = (3x2 − 1)/2,

P0(x) = (5x3 − 3x)/2.

C2 Rodrigue’s Formula

They can also be represented using Rodrigue’s Formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (C.3)

This can be demonstrated through the following observations

C2.1 Its a polynomial

The right hand side of (C.3) is a polynomial.

C2.2 It takes the value 1 at 1.

If

v(x) =
1

2nn!

dn

dxn
(x2 − 1)n,
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then, treating (x2 − 1)n = (x− 1)n(x+ 1)n as a product and using Leibnitz’ rule to differentiate n
times, we have

v(x) =
1

2nn!
(n!(x+ 1)n + terms with (x− 1) as a factor) ,

so that

v(1) =
n!2n

2nn!
= 1.

C2.3 It satisfies the equation

Finally

(1 − x2)v′′ − 2xv′ + n(n+ 1)v = 0,

since, if h(x) = (1 − x2)n, then h′ = −2nx(1 − x2)n−1, so that

(1 − x2)h′ + 2nxh = 0.

Now differentiate n+ 1 times, using Leibnitz, to get

(1 − x2)hn+2 − 2(n + 1)xhn+1 − 2
(n + 1)n

2
hn + 2nxhn+1 + 2n(n+ 1)hn = 0,

or

(1 − x2)hn+2 − 2xhn+1 + n(n+ 1)hn = 0.

As the equation is linear and v ∝ h, v satisfies the equation also.

C2.4 And that’s it

Thus v(x) is proportional to the regular solution of Legendre’s equation and v(1) = P(1) = 1, so
v(x) = P(x).

C3 Orthogonality of Legendre Polynomials

The differential equation and boundary conditions satisfies by the Legendre Polynomials forms a
Sturm-Liouiville system (actually a ”generalised system” where the boundary condition amounts
to insisting on regularity of the solutions at the boundaries). They should therefore satisfy the
orthogonality relation

∫ 1

−1
Pn(x) Pm(x) dx = 0, n 6= m. (C.4)

If Pn and Pm are solutions of Legendre’s equation then

[(1 − x2) P′

n]′ + n(n+ 1)Pn = 0, (C.5)

[(1 − x2) P′

m]′ +m(m+ 1)Pm = 0. (C.6)

Integrating the combination Pm(C.5)−Pn(C.6) gives

∫ 1

−1
Pm[(1 − x2) P′

n]′ − Pn[(1 − x2) P′

m]′ dx+ [n(n+ 1) −m(m+ 1)]

∫ 1

−1
Pn Pm dx = 0.
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Using integration by parts gives, for the first integral,

[
Pm(1 − x2) P′

n

]1

−1
−
[
Pn(1 − x2) P′

m

]1

−1
−
∫ 1

−1
P′

m(1 − x2) P′

n −P′

n(1 − x2) P′

m
︸ ︷︷ ︸

=0

dx = 0,

as Pm,n and their derivatives are finite at x = ±1 (i.e. they are regular there). Hence, if n 6= m

∫ 1

−1
Pn Pm dx = 0. (C.7)

C4 What is
∫ 1

−1 P2
n dx?

We can evaluate this integral using Rodrigue’s formula. We have

In =

∫ 1

−1
P2

n dx =
1

22n(n!)2

∫ 1

−1

dn

dxn
(x2 − 1)n

dn

dxn
(x2 − 1)n dx.

Integrating by parts gives

(22n(n!)2)In =

[
dn−1

dxn−1
(x2 − 1)n

]1

−1

−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dn+1

dxn+1
(x2 − 1)n dx.

Note that differentiating (x2−1)n anything less than n times leaves an expression that has (x2−1)
as a factor so that the first of these two terms vanishes. Similarly, integrating by parts n times
gives

In =
(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

d2n

dx2n
(x2 − 1)n dx.

The (2n)th derivative of the polynomial (x2 − 1)n, which has degree 2n is (2n)!. Thus

In =
(−1)n(2n)!

22n(n!)2

∫ 1

−1
(x2 − 1)n dx.

The completion of this argument is left as an exercise. One way to proceed is to use the transfor-
mation s = (x+ 1)/2 to transform the integral and then use a reduction formula to show that

∫ 1

0
sn(1 − s)n ds =

(n!)2

(2n+ 1)!
.

The final result is ∫ 1

−1
P2

n dx =
2

2n+ 1
. (C.8)

C5 Generalised Fourier Series

Sturm-Liouiville theory does more than guarantee the orthogonality of Legendre polynomials, it
also shows that we can represent functions on [−1, 1] as a sum of Legendre Polynomials. Thus for
suitable f(x) on [−1, 1] we have the generalized Fourier series

f(x) =

∞∑

0

an Pn(x). (C.9)
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To find the coefficients an, we multiply both sides of this expression by Pm(x) and integrate to
obtain

∫ 1

−1
Pm(x)f(x) dx =

∞∑

0

an

∫ 1

−1
Pn(x) Pm(x) dx = am

2

2m+ 1
,

so that

an =

(

n+
1

2

)∫ 1

−1
f(x) Pn(x) dx. (C.10)

C6 A Generating Function for Legendre Polynomials

C6.1 Definition

We consider a function of two variables G(x, t) such that

G(x, t) =
∞∑

n=0

Pn(x)tn, (C.11)

so that the Legendre Polynomials are the coefficients in the Taylor series of G(x, t) about t = 0.
Our first task is to identify what the function G(x, t) actually is.

C6.2 Derivation of the generating function.

We know that, in spherical polar coordinates, the function r−1 is harmonic, away from r = 0, i.e.

∇2 1

r
= ∇2 1

|x| = 0.

It is a harmonic function independent of φ. Similarly 1/(|x − x0|) is harmonic away from x = x0.
If x0 is a unit vector in the z-direction, then

|x− x0|2 = (x− x0).(x − x0)

= x.x− 2x.x0 + x0.x0

= r2 − 2r cos θ + 1. (C.12)

So the function
1√

r2 − 2r cos θ + 1

is harmonic, regular at the origin and independent of φ. We should therefore be able to write it in
the form,

1√
r2 − 2r cos θ + 1

=

∞∑

n=0

Anr
n Pn(cos θ). (C.13)
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If we can show that An = 1, then the replacement of cos θ by x and r by t gives the required result.
To find An, we evaluate the function along the positive z-axis, putting cos θ = 1, noting that

1√
r2 − 2r + 1

=
1

√

(r − 1)2
=

1

|r − 1| =
1

1 − r
= 1 + r + r2 + r3 + · · · , |r| < 1.

So
∞∑

n=0

rn =

∞∑

n=0

Anr
n Pn(1) =

∞∑

n=0

Anr
n,

so that An = 1. Thus, with x = cos θ and t = r,

G(x, t) =
1√

1 − 2xt+ t2
=

∞∑

n=0

tn Pn(x). (C.14)

C6.3 Applications of the Generating Function.

Generating functions can be applied in many ingenious ways, somethimes best left for examination
questions. As an example, we can differentiate G(x, t) with respect to t to show that

∂G

∂t
=

x− t

(1 − 2xt+ t2)3/2
=⇒ (1 − 2xt+ t2)

∂G

∂t
= (x− t)G.

Now write G(x, t) as a sum of Legendre polynomials to get

(1 − 2xt+ t2)

∞∑

n=0

nPn(x)tn−1 = (x− t)

∞∑

n=0

Pn(x)tn.

Now comparing the coefficients of t0 gives

P1(x) = xP0(x),

so that, as P0 = 1, we have P1 = x, as expected. Comparing the general coefficient of tn, n > 0,
gives

(n+ 1)Pn+1 −2xnPn +(n− 1)Pn−1 = xPn −Pn−1,
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or, rearranging
(n+ 1)Pn+1 −(2n+ 1)xPn +nPn−1 = 0, (C.15)

a recursion relation for Legendre polynomials.
Differentiating G(x, t) with respect to x, and proceeding in a similat way yields the result

P′

n+1 −2xP′

n + P′

n−1 = Pn, n ≥ 1. (C.16)

Combining (C.15) and (C.16), or obtaining a relationship between Gx and Gt, shows

P′

n+1 −P′

n−1 = (2n + 1)Pn . (C.17)

These need not be learnt.

C6.4 Solution of Laplace’s equation.

Remember where we first came across Lagrange polynomials. If ∇2u = 0 and u is regular at θ = 0, π
in spherical polar coordinates and with ∂/∂φ = 0 then

u(r, θ) =
∞∑

n=0

(

Anr
n +

Bn

rn+1

)

Pn(cos θ). (C.18)

C7 Example: Temperatures in a Sphere

The steady temperature distribution u(x) inside the sphere r = a, in spherical polar coordinates,
satisfies ∇2u = 0. If we heat the surface of the sphere so that u = f(θ) on r = a for some function
f(θ), what is the temperature distribution within the sphere?

The equation and boundary conditions do not depend on φ so we know that u is of the form
(C.18). Further more we expect u to be finite at r = 0 so that Bn = 0. We find the coefficients An

by evaluating this on r = a. We require

f(θ) =

∞∑

n=0

Ana
n Pn(cos θ).

We can find An using the orthogonality of the polynomials (C.7). However in (C.7), the integration
is with respect to x and not cos θ. If x = cos θ, then dx = − sin θ dθ. The interval −1 ≤ x ≤ 1 is
the interval −π ≥ θ ≥ 0. Multiply through by − sin θPm(θ) and integrate in θ to obtain

∫ 0

π
− sin θf(θ) Pm(cos θ) dθ =

∞∑

n=0

(anAn)

∫ 0

π
− sin θPn(cos θ) Pm(cos θ) dθ

=

∞∑

n=0

(anAn)

∫ 1

−1
Pn(x) Pm(x) dx =

2amAm

2m+ 1
. (C.19)

So

u(r, θ) =

∞∑

n=0

(

n+
1

2

)( r

a

)n
Pn(cos θ)

∫ π

0
f(ν) Pn(cos ν) sin ν dν. (C.20)

Let us heat the northern hemisphere and leave the southern half cold, so that f(θ) = 1 for 0 ≤ θ ≤
π/2 and f(θ) = 0 for π/2 < θ ≤ π. Then the integral in (C.20) is

∫ π/2

0
sin ν Pn(cos ν) dν =

∫ 1

0
Pn(x) dx.
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An integration of (C.17) gives

(2n + 1)

∫ 1

x
Pn(q) dq = [Pn+1 −Pn−1]

1
x = Pn−1(x) − Pn+1(x), n > 1.

We know that
∫ 1
0 P0(q) dq = 1 so

u(r, θ) =
1

2
+

1

2

∞∑

n=1

(r

a

)n
Pn(cos θ)(Pn−1(0) − Pn+1(0)).

Note that the temperature at the centre of the hemisphere (r = 0) is 1/2, which might be expected.
The Legendre polynomials of odd degree are odd and will be zero at the origin so that the coefficients
in the sum will be zero for even values of n. Hence

u(r, θ) =
1

2
+

1

2

(r

a

) ∞∑

m=0

( r

a

)2m
P2m+1(cos θ)(P2m(0) − P2(m+1)(0)). (C.21)

We need the values at the origin of the polynomials of even degree. Putting x = 0 in (C.14) gives

∞∑

n=0

tn Pn(0) =
1√

1 + t2
(C.22)

= 1 − 1

2
t2 +

1.3

2.2

t4

2!
− 1.3.5

2.2.2

t6

3!
+ · · ·

=

∞∑

m=0

(−1)m
(2m− 1)(2m − 3) · · · 3.1

2mm!
t2m

=

∞∑

m=0

(−1)m
(2m)!

22m(m!)2
t2m.

Therefore

P2m(0) − P2(m+1)(0) = (−1)m
(2m)!

22m(m!)2
− (−1)m+1 (2m+ 2)!

22m+2((m+ 1)!)2

= (−1)m
(2m)!

22m(m!)2

(

1 +
2m+ 1

2m+ 2

)

,

and

u(r, θ) =
1

2
+

1

2

(r

a

) ∞∑

m=0

( r

a

)2m
P2m+1(cos θ)(−1)m

(2m)!

22m(m!)2

(

1 +
2m+ 1

2m+ 2

)

.

We will evaluate this expression along the axis of the sphere. Here cos θ = ±1, depending if we are
in the northern or southern hemisphere. The polynomials in appearing are odd so take the value
±1 at ±1. This can be accounted for by allowing r to be negative so that it measures the directed
distance from the centre in a northerly direction.

u(r) =
1

2
+

1

2

(r

a

) ∞∑

m=0

( r

a

)2m
(−1)m

(2m)!

22m(m!)2

(

1 +
2m+ 1

2m+ 2

)

.

A graph of the solution obtained by summing this series to 1,4,7,10,13 terms is shown below
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We can see that the convergence is not good near the poles. The line that actually attains the
values 0 and 1 at the poles is the exact solution

u(r) =
1

2
+

(r/a)2 +
√

1 + (r/a)2 − 1

2(r/a)
√

1 + (r/a)2
.

This is attained as follows. Equation (C.21) tells us

u(r) =
1

2
+

1

2

(r

a

) ∞∑

m=0

( r

a

)2m
(P2m(0) − P2(m+1)(0)).

Identifying t with (r/a), and using (C.22),χ recognising that the sum only contains the even powers
of t, gives

∞∑

m=0

(r/a)2m P2m(0) −
∞∑

m=0

(r/a)2m−2 P2m(0) =
1

√

1 + (r/a)2
− 1

(r/a)2
1

√

1 + (r/a)2

Changing the index in the second sum, using P0 = 1, we find

∞∑

m=0

(r/a)2m (P2m(0) − P2m+2(0)) −
1

(r/a)2
=

1
√

1 + (r/a)2
− 1

(r/a)2
1

√

1 + (r/a)2
.

And so

u(r) =
1

2
+

1

2

r

a

(

1
√

1 + (r/a)2
− 1

(r/a)2
√

1 + (r/a)2
+

1

(r/a)2

)

,

which simplifies to the result above.
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Chapter D

Oscillation of a circular membrane

D1 The Problem and the initial steps in its solution

D1.1 The problem

If we have a circular drum, radius a, and hit it, we will set the drum vibrating. To study this
vibration, we need to solve the wave equation

c2∇2ψ = ψtt, 0 ≤ r ≤ a (D.1)

with c the speed of wave motion in the drum’s material and ψ the displacement of the drum’s
surface. We have the boundary condition

ψ(a, θ) = 0, 0 ≤ θ < 2π, (D.2)

corresponding to the drum being fixed at its circular edge. We also expect ψ to be finite at r = 0,
the drum’s centre. It we ”hit” the drum, so that, at t = 0, ψ = 0, ψt(r, θ) = f(r), then we must
also impose this initial condition.

D1.2 Separating out the time dependence

We look for oscilliatory solutions, writing

ψ(r, θ, t) = u(r, θ) exp(iωt). (D.3)

This is equivalent to looking for solutions of the type ψ = u(x)T (t) and knowing in advance that
the equation for T will have the form T ′′ + ω2T = 0 where ω is related to the separation constant.
This has solutions proportional to cosωt and sinωt and we choose to write these in exponential
form. The value of ω is the frequency of the disturbance. Doing so leads to

c2∇2u = −ω2u, or ∇2u+ λ2u = 0, (D.4)

(after dividing through by the exponential factor). Here ω = λc and we need to solve Helmholtz’
equation for the spatial part of the solution. We should expand a little on the shorthand, exp(iωt),
that we are using to describe the temporal part of the solution. The solution of the equation for
T is T = Aω cos(ωt) + Bω sin(ωt). To write this in exponential form we can take the real part of
(Aω − iBω)(cos ωt + i sinωt), i.e. of (Aω − iBω) exp(iωt). We therefore have a complex constant
multiplying (D.3) which we have omitted. We can write this complex constant in modulus-argument
form as Rω exp(iǫωt).
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Note that, defining ω2 = λc2, we would have ended up with λ rather than λ2 in (D.4), but that
would lead to lots of √’s in what follows. Note now that to find the frequency of oscillation we
need to solve the eigenvalue problem (D.4), with u(a, θ) = 0 (from (D.2) and u finite at r = 0.

urr +
1

r
ur +

1

r2
uθθ + λ2u = 0. (D.5)

D1.3 Separating out the θ dependence

We are looking for solitions that are 2π-periodic in θ as we have a circular drum. We know that if we
look for solutions of the form u(r, θ) = R(r)Θ(θ) then the θ-dependence will satisfy Θ′′ + p2Θ = 0,
where to further ensure periodicity in θ, p2 ≥ 0 and finally to ensure 2π-periodicity p = n for integer
n, n = 0, 1, 2, 3, . . .. The case n = 0 corresponds to solutions with no θ-dependence. In general the
θ-dependence of the solution is like sin(nθ) and cos(nθ). We choose to write both of these together
as exp(inθ) (strictly Rn exp(inθ) exp(iǫn)) and look for solutions of the type u = R(r) exp(inθ).
Subsitution into (D.5), dividing out the exponential factor and multiply by r2 gives

r2R′′ + rR′ + (λ2r2 − n2)R = 0, (D.6)

and if we write z = λr, R = w(z),

z2w′′ + zw′ + (z2 − n2)w = 0. (D.7)

We have obtained solutions of this equation for integer n through series and found that it has two
independent solutions. We can then write

w(z) = An Jn(z) +Bn Yn(z). (D.8)

The point z = 0 corresponds to the centre of the membrane and we wish our solution to be
analytic here. This means that we must set Bn = 0 and we consider only solutions finite at z = 0,
z = An Jn(z).

At this stage our solution is of the form

ψ(r, θ, t) =
∑

λ

∞∑

n=0

Anλ Jn(λr) exp(inθ) exp(icλt) (D.9)

where Anλ = Rnλ exp(iǫλ) exp(iǫn) are (complex) constants that we need to find so as to satisfy the
initial conditions. In relating this to our definitions above we have used Rnλ = RωRn. We return
to this solution later, but for the present we look more closely at the properties of the solutions of
Bessel’s equation so as to firstly enable us to fix possible values of λ and secondly to express the
initial conditions as generalised Fourier Series.

D1.4 On Bessel Functions

D1.4a Expression as a series

For general p we have the series solution

Jp(x) =

∞∑

j=0

(−1)j

Γ(j + 1)Γ(j + p+ 1)

(x

2

)2j+p
(D.10)
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with Γ(z) the Gamma function, extending the factorial function to non-integer argument and with
n! = Γ(n+ 1). The second independent solution is J−p(x) if p is not an integer. However if p is an
integer then as J−n = (−1)nJn, these solutions are linearly dependent. This can be seen as follows.
We have the series

J±ν =

∞∑

r=0

(−1)r

r!(r ± ν)!

(z

2

)2r±ν
, ν = 0, 1, 2, · · · .

If we look at the solution J−ν , and recall that x! = Γ(1+x) has singularities at x = −1,−2,−3, · · ·
then we realise that the first few terms in the sum become zero as ν → n an integer. These terms
correspond to r − n = −1,−2,−3, · · · ,−n, corresponding to r = n− 1, n − 2, · · · , 0. Thus, if ν is
an integer we need start the series at r = n for J−n. This gives

J−n(z) =

∞∑

r=n

(−1)r

r!(r − n)!

(z

2

)2r−n
=

∞∑

r=0

(−1)r(−1)n

(r + n)!(r)!

(z

2

)2r+n
= (−1)n Jn(z),

using rold = rnew +n. To cover this case also a second linearly independent solution Yp(x) is taken.
This is defined as

Yp(x) =
Jp cos pπ − J−p(x)

sin pπ
(D.11)

and the limit p→ n considered if p = n. (Note Yp is often written Np.) For small x

Jp(x) ≈ 1

Γ(p+ 1)

(x

2

)p
(D.12)

Y0(x) ≈ (2/π) (ln(x/2) + γ + . . .) (D.13)

Yp(x) ≈ −Γ(p)

π

(
2

x

)p

(D.14)

D1.4b Behaviour for large x.

For large x all these solutions behave like a damped sinusoidal function with y(x) ≈ A sin(x+ǫ)/
√
x.

This is easy to demonstrate, writing w(x) = f(x)y(x) and substituting into (D.7)

x2(f ′′y + 2f ′y′ + fy′′) + x(f ′y + fy′) + (x2 − n2)fy = 0

The coeficient of y′ can be made zero if 2x2f ′ + xf = 0 giving f ∝ x−1/2. Choosing f = x−1/2 and
dividing by x3/2 gives

y′′ +

(

1 +
1/4 − n2

x2

)

y = 0.

For large x, this is well approximated by y′′ + y = 0 so that y = A sin(x+ ǫ) and the result.
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Table[Plot[BesselJ[i, x], {x, 0, 15}, PlotPoints -> 50], {i, 0, 5}];Show[%]
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Table[Plot[BesselY[i, x], {x, 0, 15}, PlotPoints -> 50], {i, 0, 5}];

Show[%,PlotRange -> {-3, 1}]

All the solutions have an infinite number of zeros. The zeros of Jn are denoted jnm so that
Jn(jnm) = 0 and 0 < jn1 < jn2 < jn3 < . . ..

jn1 jn2 jn3 jn4 jn5 · · ·
n = 0 2.4048 5.5201 8.6537 11.7915 14.9309 · · ·
n = 1 3.8317 7.0156 10.173 13.323 16.471 · · ·
n = 2 5.1356 8.4172 11.6198 14.796 17.960 · · ·

...
...

...
...

...
...

D1.5 Determination of λ

We have the boundary condtion ψ(a, θ) = 0, i.e. w(λa) = 0. Thus λ is determined so that λa = jnm

or λ = jnm/a, m = 1, 2, 3, · · · . Thus the possible frequencies of the drum’s vibration are determined
as the doubly infinite family

ω = ωnm = cjnm/a (D.15)

For each frequency the vibration is described by

Jn(jnmr/a) exp(icjnmt/a) exp(inθ) (D.16)

The general solution is an arbitray linear combination of all these modes so that (D.9) becomes the
double sum

ψ(r, θ, t) =

∞∑

n=0

∞∑

m=1

Anm Jn(jnmr/a) exp(inθ) exp(icjnmt/a). (D.17)

Here now Anm = Rnm exp(iǫn) exp(iǫm). The constants Rnm can be related to the amplitude of a
particular mode, ǫn to its orientation realtive to the line θ = 0 and ǫm to its phase (where in the
sinusoidal temporal cycle it started).
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n = 0, m = 1

n = 0, m = 2

n = 1, m = 2
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n = 3, m = 4

<< NumericalMath‘BesselZeros‘;n = 1; m = 2;jnm = BesselJZeros[n, m][[m]];

radial[r_] = BesselJ[n, jnm r];azimuth[theta_] = Re[Exp[I n theta]];

wrap[f_, r_, theta_] = If[r < 1, f[r, theta], 0];polarr[x_, y_] = Sqrt[x^2 + y^2];

polartheta[x_, y_] = If[x > 0, ArcTan[y/x], If[y > 0, Pi/2 + ArcTan[-x/y],

-Pi/2 - ArcTan[x/y]]];mode[r_, theta_] = radial[r]azimuth[theta];

surf = Plot3D[wrap[mode, polarr[x, y], polartheta[x,y]], {x, -1, 1},{y, -1, 1},

PlotRange -> All, PlotPoints -> {100,100}, Lighting -> False, Mesh ->False,

Axes -> False, Boxed -> False];cont = ContourPlot[wrap[mode, polarr[x, y],

polartheta[x, y]], {x, -1,1}, {y, -1, 1}, PlotRange -> All, PlotPoints-> {100, 100},

FrameTicks->None];Show[GraphicsArray[{surf, cont}]]

D1.6 Incorporating the Initial Conditions

Our initital conditions are that, at t = 0, ψ = 0 and ψt = f(r). Putting t = 0 in (D.17) gives

0 =

∞∑

n=0

∞∑

m=1

Anm Jn(jnmr/a) exp(inθ).

Differentiating and putting t = 0 in (D.17)

f(r) =

∞∑

n=0

∞∑

m=1

(icjnm/a)Anm Jn(jnmr/a) exp(inθ)

where Anm are complex constants (as above) and it is understood that we take the real part of the
sum. The right hand side has no θ-dependence and we can deduce that we need only the component
n = 0 from the first sum. Thus we must find A0m = Am = Rm exp(iǫm), say, such that, taking real
parts,

0 =

∞∑

m=1

Rm exp(iǫm) Jn(j0mr/a). (D.18)

f(r) =

∞∑

m=1

(icj0m/a)Rm exp(iǫm) Jn(j0mr/a). (D.19)

This can be achieved by setting exp(iǫm) = −i, remembering that Rm is real. The choice −i is
driven by a desire for neatness in (D.19).
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Note that we have been a little overgeneral in our presentation here. Right at the start we
could have described the time-dependence by the solution sin(ωt). This is zero but has a non-zero
time derivative at t = 0 and is obviously that which is required for our particular initial conditions.
This corresponds to our current choice of a purely imaginary value for exp(iǫm). Similarly we could
have realised that, as the initial and boundary conditions had no θ-dependence, neither the final
solution and included only the n = 0 mode from the start. If there was some θ-dependence in
the initial condition, then we would deal with each Fourier component (in θ) separately. We are
looking to represent f(r) as a generalised Fourier Series in r, otherwise known as a Fourier-Bessel
Series. This is possible as the differential equation satisfied by the Bessel functions, together with
the boundary conditions - finiteness at r = 0 and 0 at r = a are a Sturm-Liouvuille problem.

D1.7 Orthogonality of Bessel Functions

The set of functions Jn(λr) in 0 ≤ r ≤ a) with λ = j0m/a are eigenfunctions of the Sturm-Liouiville
problem

r2R′′ + rR′ + (λ2r2 − n2)R = 0, R(0) finite, R(a) = 0 (D.20)

We can rewite this as
[
rR′
]′

+

(

λ2r − n2

r

)

R = 0,

with solution R = Jn(λr). Let λ = λi be such that Jn(λia) = 0 and λ be a different value. We have

[
r Jn(λir)

′
]
′ +

(

λ2
i r −

n2

r

)

Jn(λir) = 0, (D.21)

[
r Jn(λr)′

]
′ +

(

λ2r − n2

r

)

Jn(λr) = 0. (D.22)

If we multiply (D.21) by Jn(λr), (D.22) by Jn(λir), subtract and integrate we get

∫ a

0
Jn(λr)

[
r Jn(λir)

′
]′ − Jn(λir)

[
r Jn(λr)′

]′
dr + (λ2

i − λ2)

∫ a

0
r Jn(λir) Jn(λr) dr

− n2

∫ a

0
(Jn(λir) Jn(λr) − Jn(λr) Jn(λir))
︸ ︷︷ ︸

=0

dr

r
= 0. (D.23)

Use integration by parts on the first integral to get

[
Jn(λr)

{
r Jn(λir)

′
}
− Jn(λir)

{
r Jn(λr)′

}]
−
∫ a

0
Jn(λr)′r Jn(λir)

′ − Jn(λir)
′r Jn(λr)′

︸ ︷︷ ︸

=0

dr

+(λ2
i − λ2)

∫ a

0
r Jn(λir) Jn(λr) dr = 0.

Now Jn(λr)′ = λ J′n(λr) so, using the fact that Jn(λia) = 0, we have the result

∫ a

0
r Jn(λir) Jn(λr) dr = aλi J′n(λia)

Jn(λa)

λ2 − λ2
i

. (D.24)

Thus if λ 6= λi and J(λa) = 0, i.e. λ is another, distinct, eigenvalue, then

∫ a

0
r Jn(λir) Jn(λr) dr = 0. (D.25)
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To see what happens if λ = λi, let λ→ λi and use l’Hopital’s rule.

∫ a

0
r Jn(λir)

2 dr = aλi J
′

n(λia)

∂
∂λ Jn(λa)

∣
∣
λ=λi

∂
∂λ(λ2 − λ2

i )
∣
∣
λ=λi

=
a2

2

[
J′n(λia)

]2
. (D.26)

We can take λ and λi as different roots of J0, j0m. We shall see in the section on the generating
function that follows that

Jn±1(x) =
n

x
Jn(x) ∓ J′n(x), =⇒ (J′0)

2 = (J1)
2,

and we can easily evaluate the values of J1 at the zeros of J0.

D1.8 The solution

We can now consider (D.19), multiply by r J0(rj0n/a) and integrate between 0 and a. Only one
element of the sum survives due to the orthogonality and we have

∫ a

0
r J(rj0n/a)f(r) dr = Rn(cj0n/a)(a

2/2)[J1(j0n)]2,

giving Rn We make the substitution for A0m = Rm exp(iǫm) = −iRm in (D.17) and take the real
part of the result to yeild

ψ(r, θ, t) =

∞∑

m=1

2
∫ a
0 r J(rj0m/a)f(r) dr

cj0ma[J1(j0m)]2
J0(rj0m/a) sin(cj0mt/a). (D.27)

The animation at http://www.ucl.ac.uk/∼ucahdrb/MATHM242/ illustrates this solution and
used the following commands

<< NumericalMath‘BesselZeros‘;f[x_] = Sin[2Pi x]; stop = 10; c = 1;j0m = BesselJZeros[0,

stop]; coef = Map[2NIntegrate[x BesselJ[0, # x] f[x], {x, 0, 1}]/(c# BesselJ[1, #]^2) &,

j0m]; soln[r_, t_] := Tr[coef*Map[BesselJ[0, r#]&, j0m]*Map[Sin[c # t] &, j0m]];

res[t_] := Module[{},wrap[f_, r_]=If[r < 1, f[r, t], 0]; polarr[x_, y_] = Sqrt[x^2 + y^2];

surf = Plot3D[wrap[soln, polarr[x, y]], {x, -1, 1}, {y, -1, 1}, PlotRange -> {-.3, .3},

PlotPoints -> {20, 20},Lighting -> False, Mesh -> False, Axes -> False, Boxed -> False]];

Export["res.gif", Table[res[i], {i, 0, 6, .01}]]

D1.8a Generating Function

There is a generating function for the Bessel functions Jn. It turns out that

n=∞∑

n=−∞

Jn(x)tn = exp

(
x

2

(

t− 1

t

))

. (D.28)

This can be derived by considering solutions of Helmholtz’ equation for G(x) in Cartesian and in
polar coordinates.

∇2G+G = 0, Gxx +Gyy +G = 0, r2Grr + rGr +Gθθ + r2G = 0.

One solution is G = exp(iy), corresponding to a plane wave. In polar coordinates, this is G =
exp(ir sin θ). We have seen that the solution in polar coordinates can be found by separating out
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the angular dependence exp(inθ) leaving the radial dependence satisfying Bessel’s equation. The
plane wave is regular at the origin so we do not need the Yn solutions. We know from section A8
that we should be able to write G as follows

G = exp(ir sin θ) =

∞∑

n=−∞

An Jn(r) exp(inθ) (D.29)

for some constants An. If we write t = exp(iθ) so that sin θ = (t− t−1)/2, and replace r by x then
we have

exp

(
x

2

(

t− 1

t

))

=

n=∞∑

n=−∞

AnJn(x)tn. (D.30)

To show that the An are all equal to one we use our knowledge of the expansions of Jn(x) for small
x, obtained from the series solutions. From (D.12)

Jn
n(0) = 2−n.

We start by isolating a particular Jm from the sum (D.29) by effectively using the orthogonality
properties of cos(nθ) and sin(nθ) which lie behind the idea of Fourier Series. We multiply (D.29)
by exp(−imθ) and integrate

∫ 2π

0
exp(ir sin θ − imθ)dθ =

∞∑

n=−∞

An Jn(r)

∫ 2π

0
exp(inθ − imθ)dθ = 2πAm Jm(r)

Now differentiate m times with respect to r and put r = 0 to find

∫ 2π

0
im(sinm θ) exp(ir sin θ)dθ = 2πAm Jm

m(r),

=⇒
∫ 2π

0
im sinm θdθ = 2πAm/2

m.

Using the exponential form for sin θ gives

Am =
2m

2π

∫ 2π

0

1

2m
(exp iθ − exp−iθ)m exp(−imθ)dθ =

1

2π

∫ 2π

0
(1 − exp(−2imθ))mdθ =

1

2π
2π = 1,

as the only non-zero contribution to the integral comes from integrating the first term in the
binomial expansion of the integrand.

D1.8b Use of the Generating Function

1. We see that

Gx =
1

2

(

t− 1

t

)

G

so that
∞∑

n=−∞

tn J′n(x) =
1

2

∞∑

n=−∞

tn+1 Jn(x) − 1

2

∞∑

n=−∞

tn−1 Jn(x),

and comparing coefficients of powers of t,

J′n(x) =
1

2
(Jn−1(x) − Jn+1(x)) . (D.31)
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2. If we make the replacement t→ −1/t, we see that

G(x,−1/t) = exp

(
1

2

(

−1

t
+ t

))

= exp

(
1

2

(

t− 1

t

))

= G(x, t),

so that
∞∑

n=−∞

Jn(x)
(−1)n

tn
=

∞∑

n=−∞

tn Jn(x).

However the left hand side is also
∑

∞

n=−∞
tn J−n(x)(−1)n, using −n, rather than n to take

us through the sum. Thus

∞∑

n=−∞

tn J−n(x)
(−1)n

=

∞∑

n=−∞

tn Jn(x),

and comparing coefficients of tn,

Jn(x) = (−1)n J−n(x), (D.32)

so that
J−1(x) = − J1(x), J−2(x) = J2(x).

Thus from (D.31), with n = 0,
J′0(x) = − J1(x). (D.33)

3. If we choose to differentiate G with respect to t, then we can show

2n

x
Jn(x) = Jn−1(x) + Jn+1(x). (D.34)
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