STAT 319 - Probability and Statistics For Engineers

Lecture 6

Fundamentals of Sampling Distributions and Point Estimations

Engineering College, Hail University, Saudi Arabia

6.1 Definitions

Definitions

A population: Consist of the totality of observations with which we are concerned

A sample is a subset of a population

Let $X_1, X_2, ..., X_n$ be n independent random variables, each having the same probability distribution f(x). We then define $X_1, X_2, ..., X_n$ to be random sample of size n from the population f(x).

Random Samples

The rv's X_1, \ldots, X_n are said to form a (simple

random sample of size n if

- 1. The X_i 's are independent rv's.
- 2. Every X_i has the same probability distribution.

Statistic

A *statistic* is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.

or

Any function of the random variables constituting of random sample called a statistic.

If X_1 , X_2 , ..., X_n represent a random sample of size n, then:

1) the sample mean is defined by the statistic

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

2) the sample variance is defined by the statistic

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

6.2 Sampling Distributions and the Central Limit Theorem

Sample Mean

Let X_1, \ldots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then

1.
$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

2. $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma_n^2 / n$

In addition, with $T_o = X_1 + \ldots + X_n$, $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n\sigma}$.

Normal Population Distribution

Let $X_1, ..., X_n$ be a random sample from a normal distribution with mean value μ and standard deviation σ . Then for any n, \overline{X} is normally distributed with mean μ and standard deviation $\sigma_{\overline{x}} = \sigma / \sqrt{n}$.

The Central Limit Theorem

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and variance σ^2 . Then if *n* sufficiently large, \overline{X} has approximately a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}}^2 = \sigma^2/n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o} = n\sigma^2$. The larger the value of *n*, the better the approximation.

Minita	ab Solution Example 6.1
1-Sample Z (Test and Confide	ence Interval)
Select Help	Cancel Standard deviation: 2.34 Test mean: 0K Cancel OK Cancel OK

Minitab	Continued
	One-Sample Z
	Test of mu = 5 vs < 5 The assumed standard deviation = 2.34
	95% Upper 36 6.00000 0.39000 6.64149 2.56 0.995

6.4 Point Estimation

Point Estimator

A *point estimator* of a parameter θ is a single number that can be regarded as a sensible value for θ . A point estimator can be obtained by selecting a suitable statistic and computing its value from the given sample data.

Unbiased Estimator

A *point estimator* $\hat{\theta}$ is said to be an unbiased estimator of θ if $E(\hat{\theta}) = \theta$ for every possible value of θ . If $\hat{\theta}$ is not biased, the difference $E(\hat{\theta}) - \theta$ is called the *bias* of $\hat{\theta}$.

Some Unbiased Estimators

If $X_1, X_2, ..., X_n$ is a random sample from a distribution with mean μ , then \overline{X} is an unbiased estimator of μ .

When *X* is a binomial rv with parameters *n* and *p*, the sample proportion $\hat{p} = X / n$ is an unbiased estimator of *p*.

Principle of Minimum Variance Unbiased Estimation (MVUE)

Among all estimators of θ that are unbiased, choose the one that has the minimum variance. The resulting $\hat{\theta}$ is called the *minimum variance unbiased estimator* (*MVUE*) of θ

MVUE for a Normal Distribution

Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with parameters μ and σ

Then the estimator $\hat{\mu} = \overline{X}$ is the MVUE for μ

Standard Error

The standard error of an estimator is $\hat{\theta}$ its standard deviation $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$ the standard error itself involves unknown parameters whose values can be estimated, substitution into yields the *estimated* standard error of the estimator, denoted

$$\hat{\sigma}_{\hat{ heta}}$$
 or $s_{\hat{ heta}}$

Confidence Intervals

An alternative to reporting a single value for the parameter being estimated is to calculate and report an entire interval of plausible values – a *confidence interval* (**CI**). A *confidence level* is a measure of the degree of reliability of the interval.

95% Confidence Interval

If after observing $X_1 = x_1, ..., X_n = x_n$, we compute the observed sample mean \overline{x} , then a **95% confidence interval** for μ the mean of normal population can be expressed if σ known as:

$$\left(\overline{x}-1.96\cdot\frac{\sigma}{\sqrt{n}}, \overline{x}+1.96\cdot\frac{\sigma}{\sqrt{n}}\right)$$

Other Levels of Confidence

A $100(1-\alpha)\%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Sample Size

The general formula for the sample size n necessary to ensure an interval width w is

$$n = \left(z_{\alpha/2} \cdot \frac{\sigma}{w}\right)^2$$