Lecture 6

Fundamentals of Sampling Distributions and Point Estimations

Engineering College, Hail University, Saudi Arabia

Definitions

A population: Consist of the totality of observations with which we are concerned A sample is a subset of a population

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be n independent random variables, each having the same probability distribution $\mathrm{f}(\mathrm{x})$. We then define $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$, X_{n} to be random sample of size n from the population $\mathrm{f}(\mathrm{x})$.

Random Samples

The rv's X_{1}, \ldots, X_{n} are said to form a (simple random sample of size n if

1. The X_{i} 's are independent rv's.
2. Every X_{i} has the same probability distribution.

Statistic

A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.
or
Any function of the random variables constituting of random sample called a statistic.

If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ represent a random sample of size n , then:

1) the sample mean is defined by the statistic

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

2) the sample variance is defined by the statistic

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

6.2 Sampling Distributions and the Central Limit Theorem

Sample Mean

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$ be a random sample from a distribution with mean value μ and standard deviation σ. Then

$$
\begin{aligned}
& \text { 1. } E(\bar{X})=\mu_{\bar{X}}=\mu \\
& \text { 2. } V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
\end{aligned}
$$

In addition, with $T_{\mathrm{o}}=X_{1}+\ldots+X_{n}$,
$E\left(T_{o}\right)=n \mu, V\left(T_{o}\right)=n \sigma^{2}$, and $\sigma_{T_{o}}=\sqrt{n} \sigma$.

Normal Population Distribution

Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, \bar{X} is normally distributed with mean μ and standard deviation $\sigma_{\bar{X}}=\sigma / \sqrt{n}$.

The Central Limit Theorem

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and variance σ^{2}.
Then if n sufficiently large, \bar{X} has approximately a normal distribution with $\mu_{\bar{X}}=\mu$ and $\sigma_{\bar{X}}^{2}=\sigma^{2} / n$, and T_{o} also has approximately a normal distribution with $\mu_{T_{o}}=n \mu, \sigma_{T_{o}}=n \sigma^{2}$. The larger the value of n, the better the approximation.

The Central Limit Theorem

If $n>30$, the Central Limit Theorem can be used.

Developing the Distribution

Of the Sample Mean

Developing a Sampling Distribution

- Assume there is a population ...
- Population size $\mathrm{N}=4$
- Random variable, x , is age of individuals
- Values of $\mathrm{x}: 18,20$, 22, 24 (years)

Developing a Sampling Distribution

Summary Measures for the Population Distribution:

$$
\begin{aligned}
& \mu=\frac{\sum x_{i}}{N} \\
& =\frac{18+20+22+24}{4}=21 \\
& \sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}}=2.236
\end{aligned}
$$

Developing a Sampling Distribution

Now consider all possible samples of size $\mathrm{n}=2$
(continued)

$\mathbf{1}^{\text {st }}$	$\mathbf{2}^{\text {nd }}$ Observation			
Obs	18	20	22	24
18	18,18	18,20	18,22	18,24
20	20,18	20,20	20,22	20,24
22	22,18	22,20	22,22	22,24
24	24,18	24,20	24,22	24,24

		16 Sample Means		
1st	2nd Observation			
Obs	18	20	22	24
18	18	19	20	21
20	19	20	21	22
22	20	21	22	23
24	21	22	23	24

Developing a Sampling Distribution

 Sampling Distribution of All Sample ${ }^{\text {(continued) }}$ Means16 Sample Means

1st	2nd Observation			
Obs	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 2}$	$\mathbf{2 4}$
$\mathbf{1 8}$	18	19	20	21
$\mathbf{2 0}$	19	20	21	22
$\mathbf{2 2}$	20	21	22	23
$\mathbf{2 4}$	21	22	23	24

Sample Means Distribution

Developing a Sampling Distribution

(continued)
Summary Measures of this Sampling Distribution:

$$
\mu_{\bar{x}}=\frac{\sum \bar{x}_{i}}{\mathrm{~N}}=\frac{18+19+21+\cdots+24}{16}=21
$$

$$
\begin{aligned}
\sigma_{\bar{x}} & =\sqrt{\frac{\sum\left(x_{i}-\mu_{\bar{x}}\right)^{2}}{N}} \\
& =\sqrt{\frac{(18-21)^{2}+(19-21)^{2}+\cdots+(24-21)^{2}}{16}}=1.58
\end{aligned}
$$

Comparing the Population with its Sampling Distribution

> Population
> $\mathrm{N}=4$
> $\mu=21 \quad \sigma=2.236$

Sample Means Distribution

$$
\mu_{\bar{x}}=21^{n=2} \quad \sigma_{\bar{x}}=1.58
$$

Central Limit Theorem

a Normal Population

If a population is normal with mean μ and standard deviation σ, the sampling distribution of \bar{X} is also normally distributed with:

$$
\mu_{\bar{x}}=\mu
$$

and

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Central Limit Theorem

a Normal Population

- Z value for the sampling distribution of \bar{X}

$$
z=\frac{(\bar{x}-\mu)}{\frac{\sigma}{\sqrt{n}}}
$$

Where
$\overline{\mathrm{x}} \quad$ the sample mean
$\mu \quad$ the population mean
σ population standard deviation
n sample size

Sampling Distribution Properties

$$
\mu_{\overline{\mathrm{x}}}=\mu
$$

Normal Population
(i.e. \bar{X} is unbiased)

Normal Sampling Distribution (has the same mean)

Sampling Distribution Properties

-For sampling with replacement

If the Population is not Normal

We can apply the Central Limit Theorem:
Even if the population is not normal,
...sample means from the population will be approximately normal as long as the sample size is large enough
...and the sampling distribution will have

$$
\mu_{\bar{x}}=\mu
$$

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Central Limit Theorem

Central Limit Theorem

The Central Limit Theorem states that for sufficiently large sample sizes ($n \geq 30$), regardless of the shape of the population distribution, if samples of size n are randomly drawn from a population that has a mean μ and a standard deviation σ, the samples' means \bar{X} are approximately normally distributed. If the populations are normally distributed, the samples' means are normally distributed regardless of the sample sizes. The implication of this theorem is that for sufficiently large populations, the normal distribution can be used to analyze samples drawn from populations that are not normally distributed, or whose distribution characteristics are unknown.

Example 6.1

In an Electronics company that manufactures circuit boards, the average imperfection (defects) on a board is $\boldsymbol{\mu}=\mathbf{5}$ with a standard deviation of $\boldsymbol{\sigma}=2.34$ when the production process is under statistical control.
A random sample of $\boldsymbol{n}=36$ circuit boards has been taken for inspection and a mean of $x=6$ defects per board was found.
What is the probability of getting a value of $x \leq 6$ if the process is under control?

Solution 6.1

Because the sample size is greater than 30, the Central Limit Theorem can be used in this case even though the number of defects per board follows a Poisson distribution.
Therefore, the distribution of the sample mean x is approximately normal with the standard deviation :

$$
\begin{aligned}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}}=\frac{2.34}{\sqrt{36}} 0.39 \\
z & =\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{6-5}{0.39}=\frac{1}{0.39}=2.56
\end{aligned}
$$

The result $Z=2.56$ corresponds to 0.4948 on the table of normal curve areas:

Minitab Solution Example 6.1

Minitab Continued

One-Sample Z
Test of mul $=5 \mathrm{vs}<5$
The assumed standard deviation $=2.34$

Example 6.2

An Electronics company that manufactures resistors, the average resistance is $\boldsymbol{\mu = 1 0 0}$ Ohms with a standard deviation of $\boldsymbol{\sigma}=10$.
Find the probability that a random sample of \boldsymbol{n} = 25 resistors will have an average resistance less than 95 Ohms

Example 6.3

The average number of parts that reach the end of a production line defect-free at any given hour of the first shift is 372 parts with a standard deviation of 7 .
What is the probability that a random sample of 34 different productions' first-shift hours would yield a sample mean between 369 and 371 parts that reach the end of the line defect-free?

Example 6.4

Suppose a population has mean $\mu=8$ and standard deviation $\sigma=3$. Suppose a random sample of size $\mathrm{n}=36$ is selected.

What is the probability that the sample mean is between 7.8 and 8.2 ?

6.4 Point Estimation

Point Estimator

A point estimator of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimator can be obtained by selecting a suitable statistic and computing its value from the given sample data.

Unbiased Estimator

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if $E(\hat{\theta})=\theta$ for every possible value of θ. If $\hat{\theta}$ is not biased, the difference $E(\hat{\theta})-\theta$ is called the bias of $\hat{\theta}$.

The pdf's of a biased estimator $\hat{\theta}_{1}$ and an unbiased estimator $\hat{\theta}_{2}$ for a parameter

Bias of θ_{1}

The pdf's of a biased estimator $\hat{\theta}_{\mathrm{P}}$ and an unbiased estimator $\hat{\theta}_{2}$ for a parameter θ.

Bias of θ_{1}

Some Unbiased
 Estimators

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ, then \bar{X} is an unbiased estimator of μ.

When X is a binomial rv with parameters n and p, the sample proportion $\hat{p}=X / n$ is an unbiased estimator of p.

Some Unbiased
 Estimators

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ. Then the estimator

$$
\hat{\sigma}^{2}=S^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

is an unbiased estimator.

Principle of Minimum Variance Unbiased Estimation (MVUE)

Among all estimators of θ that are unbiased, choose the one that has the minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ

> Graphs of the pdf's of two different unbiased estimators

MVUE for a Normal Distribution

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal distribution with parameters μ and σ

Then the estimator $\hat{\mu}=\bar{X}$ is the MVUE for μ

A biased estimator that is preferable to the MVUE

Standard Error

The standard error of an estimator is $\hat{\theta}$ its standard deviation $\quad \sigma_{\hat{\theta}}=\sqrt{V(\hat{\theta})}$ the standard error itself involves unknown parameters whose values can be estimated, substitution into yields the estimated standard error of the estimator, dehoted

$$
\hat{\sigma}_{\hat{\theta}} \text { or } S_{\hat{\theta}} .
$$

Confidence Intervals

An alternative to reporting a single value for the parameter being estimated is to calculate and report an entire interval of plausible values - a confidence interval (CI). A confidence level is a measure of the degree of reliability of the interval.

95\% Confidence Interval

If after observing $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, we compute the observed sample mean \bar{X}, then a $\mathbf{9 5 \%}$ confidence interval for μ the mean of normal population can be expressed if σ known as:

$$
\left(\bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}}\right)
$$

Other Levels of Confidence

Other Levels of Confidence

A $100(1-\alpha) \%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\left(\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)
$$

Sample Size

The general formula for the sample size n necessary to ensure an interval width w is

$$
n=\left(z_{\alpha / 2} \cdot \frac{\sigma}{w}\right)^{2}
$$

