
Matrix Methods for Linear Systems of Differential Equations

We now present an application of matrix methods to linear systems of differential equations. We shall
follow the development given in Chapter 9 of Fundamentals of Differential Equations and Boundary
Value Problems by Nagle, Saff, Snider, third edition.

Calculus of Matrices

If we allow the entries aijt in an n  n matrix At to be functions of the variable t, then At is a
matrix function of t. Similarly if the entries xit of a vector xt are functions of t, then xt is a vector
function of t. A matrix At is said to be continuous at t0 if each aijt is continuous at t0. At is
differentiable at t0 if each aijt is differentiable at t0 and we write

dA
dt
t0  A′t0  aij

′ t0 nn

Also


a

b
Atdt  

a

b
aijtdt

nn

We have the following differentiation formulas for matrices

d
dt
CA  C dA

dt
, C a constant matrix

d
dt
A  B  dA

dt
 dB

dt

d
dt
AB  A dB

dt
 B dA

dt

In the last formula the order in which the matrices are written is important, since matrix multiplication
need not be commutative.

Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

x′t  Atxt  ft     1

where xt and ft are n  1 column vectors and At  aijtnn.

A system is called homogeneous if ft  0; otherwise it is called nonhomogeneous. When the
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elements of A are constants, the system is said to have constant coefficients.

We note that a linear nth order differential equation

ynt  pn−1tyn−1   p0ty  gt     2

can be rewritten as a first order system in normal form using the substitution

x1t  yt, x2t  y′t, . . . . , xnt  yn−1t     2.5

Then

x1
′ t  y′t  x2t

x2
′ t  y′′t  x3t



xn−1
′ t  yn−1t  xnt

xn
′ t  ynt  −pn−1tyn−1 − − p0ty  gt

From 2.5 we can write this last equation as

xn
′ t  −p0tx1t − − pn−1txnt  gt

Thus the differential equation 2 can be put in the form 1 with

xt 

x1

x2



xn

, ft 

0

0



gt

and

A 

0 1 0  0 0

0 0 1  0 0

     

0 0 0  0 1

−p0t −p1t −p2t  −pn−2t −pn−1t

The initial value problem for the normal system 1 is the problem of finding a differential vector
function xt that satisfies the system on an interval I and also satisfies the initial condition xt0  x0,
where t0 is a given point of I and x0 is a given constant vector.
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Example:
Convert the initial value problem

y′′  3y′  2y  0

y0  1

y′0  3

into an initial value problem for a system in normal form.
Solution: y′′  −3y′ − 2y. x1t  yt x2t  y′t

x1
′  x2

x2
′  −3x2 − 2x1

Thus

x′t 
0 1

−2 −3

x1

x2


0

0

We also have the initial condition x0 
x10

x20


1

3
 x0.

Theorem 1 (Existence and Uniqueness)
Suppose At and ft are continuous on an open interval I that contains the point t0. Then, for any
choice of the initial vector x0 there exists a unique solution xt on the entire interval I to the initial
value problem

x′t  Atxt  ft, xt0  x0

Remark: Just as in Ma 221 we may introduce the Wronskian of n vectors functions and use it to test for
linear independence. We have

Definition: The Wronskian of the n vector functions

x1t  colx11,x21, . . . . ,xn1, . . . . ,xnt  colx1n,x2n, . . . . . ,xnn

is defined to be the real-valued function
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Wx1, . . . . ,xn t 

x11t x12t  x1nt

x21t x22t  x2nt

   

xn1t xn2t  xnnt

One can show that the Wronskian of solutions x1, . . . . ,xn to x′  Ax is either identically zero or never
zero on and interval I. Also, a set of n solutions x1, . . . . . ,xn to x′  Ax on I is linearly independent if
and only if their Wronskian is never zero on I. Thus the Wronskian provides us with an easy test for
linear independence for solutions of x′  Ax.

Theorem 2 (Representation of Solutions - Homogeneous Case)
Let x1,x2, . . . . ,xn be n linearly independent solutions to the homogeneous system

x′t  Atxt     3

on the interval I, where At is an n  n matrix function continuous on I. Then every solution of 3 on
I can be expressed in the form

xt  c1x1t   cnxnt     4

where c1, . . . . ,cn are constants.

A set of solutions x1, . . . . ,xn that are linearly independent on I is called a fundamental solution set
for 3. The linear combination 4 is referred to as the general solution of 3.

Exercise:

Verify that

e2t

e2t

e2t

,

−e−t

0

e−t
,

−e−t

e−t

0

is a fundamental solution set for the system

x′t 

0 1 1

1 0 1

1 1 0

xt     5

0 1 1

1 0 1

1 1 0

, eigenvectors:

−1

1

0

,

−1

0

1

↔ −1,

1

1

1

↔ 2
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Consider x3t 

−e−t

e−t

0

. Then

Ax3t 

0 1 1

1 0 1

1 1 0

−e−t

e−t

0



e−t

−e−t

0

 x3
′ t

Remark: The matrix Xt 

e2t −e−t −e−t

e2t 0 e−t

e2t e−t 0

is a fundamental matrix for the DE 5. The general

solution of 5 can be written as

xt  Xtc  c1

e2t

e2t

e2t

 c2

−e−t

0

e−t
 c3

−e−t

e−t

0

Remark: If we define an operator L by

Lx  x′ − Ax

then this operator is linear. That is, Lc1x1  c2x2   c1Lx1   c2Lx2 . Thus if x1 and x2 are
homogeneous solutions of the homogeneous equation

x′  Ax

the c1x1  c2x2 is also a solution of this equation. Another consequence of this linearity is the
superposition principle for linear systems. It states that if xp1 and xp2 are solutions respectively of the
nonhomogeneous systems Lx  g1 and Lx  g2, then xp1  xp2 is a solution of Lx  g1  g2.
This leads to

Theorem 3 (Representation of Solutions - Nonhomogeneous Case)
Let xp be a particular solution to the nonhomogeneous system

x′t  Atxt  ft     6

on the interval I, and let x1,x2, . . . . ,xn be a fundamental solution set on I for the corresponding
homogeneous system x′t  Atxt. Then every solution to 6 on I can be expressed in the form

xt  xpt  c1x1t   cnxnt     7

where c1, . . . . ,cn are constants.
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Remark: The linear combination of xp,x1, . . . . ,xn written in 7 with arbitrary constants c1, . . . . . ,cn is
called the general solution of 6. We may express this solution as x  xp  Xc, where X is a
fundamental matrix for the homogeneous system and c is an arbitrary constant vector.

Solving Normal Systems

1. To determine a general solution to the n  n homogeneous system x′  Ax :
a. Find a fundamental solution set x1, . . . . . ,xn that consists of n linearly

independent solutions to the homogeneous equation.
b. Form the linear combination

x  Xc  c1x1   cnxn

where c  colc1, . . . . . ,cn is any constant vector and X  x1, . . . . . ,xn  is the
fundamental matrix, to obtain a general solution.

2. To determine a general solution of to the nonhomogeneous system x′  Ax  f :
a. Find a particular solution xp to the nonhomogeneous system.
b. Form the sum of the particular solution and the general solution

Xc  c1x1   cnxn to the corresponding homogeneous system in part 1,

x  xp  Xc  xp  c1x1   cnxn

to obtain a general solution.

Homogeneous Linear Systems with Constant Coefficients
Consider now the system

x′t  Axt     8

where A is a (real) constant n  n matrix.

Theorem 4
Suppose the n  n constant matrix A has n linearly independent eigenvectors u1,u2, . . . ,un. Let ri be
the eigenvalue corresponding to the ui. Then

er1tu1,er2tu2, . . . . ,erntun     9

is a fundamental solution set on −, for the homogeneous system x′  Ax. Hence the general
solution of x′  Ax is

xt  c1er1tu1   cnerntun

where c1, . . . . ,cn are arbitrary constants.
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Remark: The eigenvalues may be real or complex and need not be distinct.

Proof
Since Aui  riui we have

d
dt
eritui  rieritui  eritAui  Aeritui

so each element of the set 9 is a solution of the system 8. Also the Wronskian of these solutions is

Wt  deter1tu1, . . . . . ,erntun   er1r2rn t detu1, . . . . . . ,un  ≠ 0

since the eigenvectors are linearly independent.

Example
Find a general solution of

x′ 
5 4

−1 0
x

5 4

−1 0
, eigenvectors:

−1

1
↔ 1,

−4

1
↔ 4

Thus xt  c1et −1

1
 c2e4t −4

1

Thus the solution is

x1t  −c1et − 4c2e4t

x2t  c1et  c2e4t

    ∗

SNB gives the following strange looking result:

x1
′  5x1  4x2

x2
′  −x1

, Exact solution is:
x1t  − 1

3
C1et  4

3
C1e4t  4

3
C2e4t − 4

3
C2et

x2t  − 1
3

C1e4t  1
3

C1et  4
3

C2et − 1
3

C2e4t

This is correct and is equivalent to ∗, if we let c1  1
3

C1  4
3

C2 and c2  − 1
3

C1  1
3

C2 .
However, it is a most cumbersome form of the solution.
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Exercise:
Nagle and Saff page 535 #23. Find a fundamental matrix for the system

x′t 

2 1 1 −1

0 −1 0 1

0 0 3 1

0 0 0 7

xt

Solution:

2 1 1 −1

0 −1 0 1

0 0 3 1

0 0 0 7

, eigenvectors:

1

−3

0

0

↔ −1,

1

0

0

0

↔ 2,

−1

1

2

8

↔ 7,

1

0

1

0

↔ 3

Hence the four linearly independent solutions are

e−t

1

−3

0

0

,e2t

1

0

0

0

,e7t

−1

1

2

8

,e3t

1

0

1

0

Therefore a fundamental matrix is

e−t e2t −e7t e3t

−3e−t 0 e7t 0

0 0 2e7t e3t

0 0 8e7t 0

We know that if a matrix has n distinct eigenvalues, then the eigenvectors associated with these
eigenvalues are linearly independent. Hence

Corollary
If the n  n constant matrix A has n distinct eigenvalues r1, . . . . , rn and ui is an eigenvector associated
with ri then er1tu1, . . . . ,erntun is a fundamental solution set for the homogeneous system x′  Ax.
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Example
Solve the initial value problem

x′t 

1 2 −1

1 0 1

4 −4 5

xt x0 

−1

0

0

Solution:

1 2 −1

1 0 1

4 −4 5

, eigenvectors:

−1

1

2

↔ 1,

−2

1

4

↔ 2,

−1

1

4

↔ 3

Thus xt  c1et

−1

1

2

 c2e2t

−2

1

4

 c3e3t

−1

1

4



−c1et − 2c2e2t − c3e3t

c1et  c2e2t  c3e3t

2c1et  4c2e2t  4c3e3t

We define xt via this. xt 

−c1et − 2c2e2t − c3e3t

c1et  c2e2t  c3e3t

2c1et  4c2e2t  4c3e3t

so that

x0 

−c1 − 2c2 − c3

c1  c2  c3

2c1  4c2  4c3



−1

0

0

Thus we form

−1 −2 −1 −1

1 1 1 0

2 4 4 0

, row echelon form:

1 0 0 0

0 1 0 1

0 0 1 −1

. Hence

c1  0,c2  1,c3  −1. Then the solution is

xt  e2t

−2

1

4

− e3t

−1

1

4

Complex Eigenvalues
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We now discuss how one solves the system

x′t  Axt     ∗

in the case where A is a real matrix and the eigenvalues are complex. We shall show how to obtain two
real vector solutions of the system ∗. Recall that if r1    i is a solution of the equation that
determines the eigenvalues, namely,

p  detA − rI  0

then r2   − i is also a solution of this equation, and hence is an eigenvalue. Recall that r2 is called
the complex conjugate of r1 and r1  r2.

Let z  a  ib, where a and b are real vectors, be an eigenvector corresponding to r1. Then it is not
hard to see that z  a − ib is an eigenvector corresponding to r2. Since

A − r1Iz  0

then taking the conjugate of this equation and noting that since A and I are real matrices then A  A and
I  I

A − r1Iz  A − r1Iz  A − r2Iz  0

so z is an eigenvector corresponding to r2. Therefore the vectors

w1t  eita  ib

and

w2t  e−ita − ib

are two linearly independent vector solutions of ∗. However, they are not real. To get real solutions
we proceed as follows: Since

eit  etcost  i sint

then

w1t  eita  ib  etcosta − sintb  isinta costb

Therefore

w1t  x1t  ix2t

where

x1t  etcosta − sintb

x2t  etsinta costb

Since w1t is a solution of ∗, then

w1
′ t  Aw1t

so

x1
′ t  ix2

′ t  Ax1t  iAx2t

Equating real and imaginary parts of this last equation leads to the real equations

x1
′ t  Ax1t x2

′ t  Ax2t
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so that x1t and x2t are real vector solutions of ∗ corresponding to the eigenvalues   i.
Note that we can get the two expressions above for x1t and x2t by taking the real and imaginary
parts of w1t
Example

Find the general solution of the initial value problem

x′t 
−3 −1

2 −1
xt x 

2


0

1

Solution:

We first find the eigenvalues and eigenvectors of the matrix. We want the roots of

−3 − r −1

2 −1 − r
 3  r1  r  2  r2  4r  5  0

Thus

r 
−4  16 − 415

2
 −2  i

The system of equations to determine the eigenvectors is

−3 − rx1 − x2  0

2x1  −1 − rx2  0

or

3  rx1  x2  0

2x1  −1 − rx2  0

For r  −2  i we have

1  ix1  x2  0

2x1  1 − ix2  0

Multiplication of the first equation by i − i yields the second equation, since 1  i1 − i  2.
Thus

x2  −1  ix1

Letting x1  1 gives the eigenvector
1

−1 − i
. Since the second eigenvector is the complex

conjugate of the first we have

−3 −1

2 −1
, eigenvectors:

1

−1 − i
↔ −2  i,

1

−1  i
↔ −2 − i

1

−1 − i


1

−1
 i

0

−1

Thus   −2,  1,a 
1

−1
,b 

0

−1
. The two linearly independent solutions are
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wt  e−2it 1

−1 − i


1e−2teit

−1 − ie−2teit


e−2tcos t  i sin t

−1 − ie−2tcos t  i sin t


e−2t cos t  ie−t sin t

e−2t−cos t  sin t  ie−2t−cos t − sin t

 e−2t cos t
1

−1
− sin t

0

−1
 ie−2t sin t

1

−1
 cos t

0

−1

Therefore

x1t  etcosta − sintb  e−2t cos t
1

−1
− sin t

0

−1

x2t  etsinta costb  e−2t sin t
1

−1
 cos t

0

−1

Thus

xt  c1e−2t cos t
1

−1
− sin t

0

−1
 c2e−2t sin t

1

−1
 cos t

0

−1

x 
2

 −c1e−
0

−1
 c2e−

1

−1


0

1
. Therefore

c1  e and c2  0

so

xt  e−2t cos t
1

−1
− sin t

0

−1

Example Find a [real] general solution to

x1
′

x2
′


3 1

−2 1

x1

x2
.

Solution: We first find the eigenvalues and eigenvectors of the matrix. We want the solutions to

det
3 − r 1

−2 1 − r
 3 − r1 − r  2  r2 − 4r  5  0

Thus

r 
4  16 − 415

2
 2  i

The system of equations to determine the eigenvectors is
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3 − rx1  x2  0

− 2x1  1 − rx2  0

For r  2  i we have

1 − ix1  x2  0

− 2x1  −1 − ix2  0

or

1 − ix1  x2  0

2x1  1  ix2  0

One can see that the first and second equations are the same by multiplying the first equation by 1  i
and recalling that 1  i1 − i  2. Thus

x2  − 1
1 − i

x1

We have

x1  − 1
1 − i

x2  − 1
1 − i

1  i
1  i

x2  − 1  i
2

x2

Letting x2  2 we have the eigenvector

−1 − i

2

Since the eigenvectors are complex conjugates we have that the eigenvalues of the matrix
3 1

−2 1

are 2  i and 2 − i and the corresponding eigenvectors are
−1 − i

2
and

−1  i

2
.

The eigenvalues of the matrix
3 1

−2 1
are 2  i and 2 − i and the corresponding eigenvectors are

−1 − i

2
and

−1  i

2
.

Let r1  2  i, so   2,  1. Also

−1 − i

2


−1

2
 i

−1

0

so a 
−1

2
and b 

−1

0
.

x1t  etcosta − sintb  e2t cos t
−1

2
− sin t

−1

0

x2t  etsinta costb  e2t sin t
−1

2
 cos t

−1

0
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xt  c1e2t cos t
−1

2
− sin t

−1

0
 c2e2t sin t

−1

2
 cos t

−1

0

 c1
e2t−cos t  sin t

2e2t cos t
 c2

e2t− sin t − cos t

2e2t sin t

Nonhomogeneous Linear Systems
The techniques of Undetermined Coefficients and Variation of Parameters that are used to find
particular solutions to the nonhomogeneous equation

y′′  pxy′  qxy  gx

have analogies to nonhomogeneous systems. Thus we now discuss how one solves the
nonhomogeneous system

x′t  Atxt  ft

Undetermined Coefficients
Consider the nonhomogeneous constant coefficient system

x′t  Axt  ft

Before presenting the method for systems we recall the following result for second nonhomogeneous
order differential equations. For more on this see Linear Second Order DEs (Hold down the Shift key
and click.)

A particular solution of

ay′′  by′  cy  Kex

where a,b,c are constants is

yp  Kex

p
if p ≠ 0

yp  Kxex

p′
if p  0, p′ ≠ 0

yp  K
p′′

x2ex if p  p′  0

where

pr  ar2  br  c

Example

y′′ − 5y′  4y  2ex
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Homogeneous solution: p  2 − 5  4   − 4 − 1    4, 1  yh  c1ex  c2e4x

Now to find a particular solution for 2ex.    1 p1  0 Since p′  2 − 5
p′1  2 − 5  −3 ≠ 0


yp  kxex

p′


2xex

−3



y  yh  yp  c1ex  c2e4x − 2
3

xex

Example Problem 3, page 547 of text.
Find the general solution of

x′t 

1 −2 2

−2 1 2

2 2 1

xt 

2et

4et

−2et

Solution:
We first find the homogeneous solution.

1 −2 2

−2 1 2

2 2 1

, eigenvectors:

−1

−1

1

↔ −3,

−1

1

0

,

1

0

1

↔ 3

Since these eigenvectors are linearly independent, then

xht  c1e−3t

−1

−1

1

 c2e3t

−1

1

0

 c3e3t

1

0

1

We seek a particular solution of the form

xpt  et

a1

a2

a3

Then

xp
′ t  et

a1

a2

a3

 Axpt 

2et

4et

−2et

 et

1 −2 2

−2 1 2

2 2 1

a1

a2

a3



2et

4et

−2et

 et

a1 − 2a2  2a3

−2a1  a2  2a3

2a1  2a2  a3



2

4

−2

Thus
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a1  a1 − 2a2  2a3  2

a2  −2a1  a2  2a3  4

a3  2a1  2a2  a3 − 2

, Solution is: a2  0,a1  1,a3  −1

Therefore

xpt  et

1

0

−1

and

xt  xht  xpt  c1e−3t

−1

−1

1

 c2e3t

−1

1

0

 c3e3t

1

0

1

 et

1

0

−1

Note: the Method of Undetermined Coefficients works only for constant coefficient systems.

Example Problem 2, Page 547 of text. Find a general solution to

x′t 
1 1

4 1
xt 

−t − 1

−4t − 2

Solution: We first find a general homogeneous solution.

1 − r 1

4 1 − r
 1 − r2 − 4  r2 − 2r − 3  r − 3r  1

Thus the eigenvalues are r  −1,3. The equations that determine the eigenvectors are

1 − rx1  x2  0

4x1  1 − rx2  0

For r  3 we have

− 2x1  x2  0

4x1 − 3x2  0

Thus x2  2x1 and an eigenvector is
1

2
.

For r  −1 we have

2x1  x2  0

4x1  2x2  0

Thus x1  − 1
2

x2 and we have the eigenvector
−1

2
. Hence
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xht  c1e3t 1

2
 c2e−t

−1

2
.

To find xp we let

xpt 
a1t  b1

a2t  b2

since ft is a polynomial.

Plugging into the DE we have

a1

a2


1 1

4 1

a1t  b1

a2t  b2


−t − 1

−4t − 2


b1 − t  b2  ta1  ta2 − 1

4b1 − 4t  b2  4ta1  ta2 − 2

Equating the coefficients of t on both sides we have

0  −1  a1  a2

0  −4  4a1  a2

or

a1  a2  1

4a1  a2  4

Therefore a1  1,a2  0.
Equating the constant terms on both sides we have

a1  b1  b2 − 1

a2  4b1  b2 − 2

Using the values for a1,a2 we have

b1  b2  2

4b1  b2  2

Thus b1  0,b2  2. With these values for the constants we have that

xpt 
t

2

Finally

xt  xht  xpt  c1e3t 1

2
 c2e−t

−1

2


t

2

Example Problem 4, page 547 of text. Find a general solution to
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x′t 
2 2

2 2
xt 

−4 cos t

− sin t

Solution: We first find a homogeneous solution.

2 − r 2

2 2 − r
 2 − r2 − 4  4 − 4r  r2 − r  r2 − 4r  rr − 4

Thus the eigenvalues are r  0,4.
The equations for the eigenvectors are

2 − rx1  2x2  0

2x1  2 − rx2  0

For r  0 we have

2x1  2x2  0

or x1  −x2. Thus we have the eigenvector
−1

1
. For r  4 we have

− 2x1  2x2  0

2x1 − 2x2  0

or x1  x2 Thus we have the eigenvector
1

1
.

Hence

xht  c1e0t −1

1
 c2e4t 1

1

We assume

xpt 
a1 cos t  b1 sin t

a2 cos t  b2 sin t

Hence

xp
′ 

−a1 sin t  b1 cos t

−a2 sin t  b2 cos t

Plugging into the DE yields

−a1 sin t  b1 cos t

−a2 sin t  b2 cos t


2 2

2 2

a1 cos t  b1 sin t

a2 cos t  b2 sin t


−4 cos t

− sin t

or

−a1 sin t  b1 cos t

−a2 sin t  b2 cos t


2a1 cos t  2a2 cos t  2b1 sin t  2b2 sin t

2a1 cos t  2a2 cos t  2b1 sin t  2b2 sin t


−4 cos t

− sin t

We equate the coefficients of the sin t and cos t terms. Thus
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b1  2a1  2a2 − 4

b2  2a1  2a2

− a1  2b1  2b2

− a2  2b1  2b2 − 1

or

2a1  2a2 − b1  4

2a1  2a2 − b2  0

a1  2b1  2b2  0

a2  2b1  2b2  1

To solve this system we form

1 0 2 2 0

0 1 2 2 1

2 2 −1 0 4

2 2 0 −1 0

and row reduce.

1 0 2 2 0

0 1 2 2 1

2 2 −1 0 4

2 2 0 −1 0

→

−2R1R3

−2R1R4

1 0 2 2 0

0 1 2 2 1

0 2 −5 −4 4

0 2 −4 −5 0

→

−2R2R3

−2R2R4

1 0 2 2 0

0 1 2 2 1

0 0 −9 −8 2

0 0 −8 −9 −2

→−R3

1 0 2 2 0

0 1 2 2 1

0 0 9 8 −2

0 0 −8 −9 −2

→R3R4

1 0 2 2 0

0 1 2 2 1

0 0 9 8 −2

0 0 1 −1 −4

→R4↔R3

1 0 2 2 0

0 1 2 2 1

0 0 1 −1 −4

0 0 9 8 −2

→−9R3R4

1 0 2 2 0

0 1 2 2 1

0 0 1 −1 −4

0 0 0 17 34

→
1

17
R4

1 0 2 2 0

0 1 2 2 1

0 0 1 −1 −4

0 0 0 1 2

→R4R3

1 0 2 2 0

0 1 2 2 1

0 0 1 0 −2

0 0 0 1 2

→

−2R3R2

−2R3R1

1 0 0 2 4

0 1 0 2 5

0 0 1 0 −2

0 0 0 1 2

→

−2R4R2

−2R4R1

1 0 0 0 0

0 1 0 0 1

0 0 1 0 −2

0 0 0 1 2
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Thus a1  0,a2  1,b1  −2,b2  2 and

xpt 
−2 sin t

cos t  2 sin t

Finally a general solution is

xt  xht  xpt  c1
−1

1
 c2e4t 1

1


−2 sin t

cos t  2 sin t

Example The eigenvalues of the matrix
3 1

−2 1
are 2  i and 2 − i and the corresponding

eigenvectors are
−1 − i

2
and

−1  i

2
.

Find a [real] general solution to

x1
′

x2
′


3 1

−2 1

x1

x2


25t

0
.

Solution: First we find a real general solution to
x1
′

x2
′


3 1

−2 1

x1

x2
.

Here   2,  1 and
−1 − i

2


−1

2
 i

−1

0
 a ib.

Since

x1t  etcosta − sintb

x2t  etsinta costb

then

x1t  e2t cos t
−1

2
− sin t

−1

0

x2t  e2t sin t
−1

2
cos t

−1

0

Hence

xht  c1x1t  c2x2t

 c1
e2t−cos t  sin t

2e2t cos t
 c2

e2t− sin t − cos t

2e2t sin t

Or we may expand one of the complex solutions and take the real and imaginary parts.
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e2it −1 − i

2
 e2tcos t  i sin t

−1 − i

2

 e2t −cos t  sin t  i− sin t − cos t

2 cos t  i2 sin t


e2t−cos t  sin t

2e2t cos t
 i

e2t− sin t − cos t

2e2t sin t

xh  c1
e2t−cos t  sin t

2e2t cos t
 c2

e2t− sin t − cos t

2e2t sin t


e2t−cos t  sin t e2t− sin t − cos t

2e2t cos t 2e2t sin t

c1

c2

Next, we find a particular solution to the given non-homogeneous equation. Since the
non-homogeneous term is a polynomial of degree one, the solution must be the same. Thus let

xpt 
x1

x2


at  b

ct  d

We substitute into the system of DEs and find the coefficients.

x1
′

x2
′


3 1

−2 1

x1

x2


25t

0

a

c


3 1

−2 1

at  b

ct  d


25t

0

a

c


3a  ct  3b  d

−2a  ct  −2b  d


25t

0

We equate like terms.

0  3a  c  25

0  −2a  c

a  3b  d

c  −2b  d

Thus (from the first pair of equations) a  −5, c  −10 and then b  1 and d  −8. Combining
homogeneous and particular solutions, we have a general solution.
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x1

x2
 c1

e2t−cos t  sin t

2e2t cos t
 c2

e2t− sin t − cos t

2e2t sin t


−5t  1

−10t − 8


e2t−cos t  sin t e2t− sin t − cos t

2e2t cos t 2e2t sin t

c1

c2


−5t  1

−10t − 8

Example a) Find the eigenvalues and eigenvectors of

A 
2 −1

1 2
.

Solution: We solve detA − rI  0.

detA − rI 
2 − r −1

1 2 − r

 2 − r2  1

2 − r2  −1

2 − r  i

r  2  i

So, the eigenvalues are a complex conjugate pair. We find the eigenvector for one and take the
complex conjugate to get the other. For r  2  i, we solve

A − rIu  0

−i −1

1 −i

u1

u2


0

0

Thus we have the equations

− iu1 − u2  0

u1 − iu2  0

The second row is redundant, so −iu1 − u2  0 or u2  −i  u1. Hence any multiple of
1

−i
is an

eigenvector for r  2  i. Then an eigenvector corresponding to r  2 − i is
1

i
.

b) Find the [real] general solution to

x1
′

x2
′


2 −1

1 2

x1

x2


0

12e2t
.

Solution: The solution is the general solution xh to the homogeneous equation plus one [particular]
solution xp to the full non-homogeneous equation. First we’ll find xp. It is in the form

xp 
c1e2t

c2e2t
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Substituting into the D.E., we obtain

x1
′

x2
′


2c1e2t

2c2e2t


2 −1

1 2

c1e2t

c2e2t


0

12e2t

Hence

2c1e2t

2c2e2t


2c1e2t − c2e2t

c1e2t  2c2e2t


0

12e2t


2c1e2t − c2e2t

c1e2t  2c2e2t  12e2t

We can divide by e2t (which is never zero) and move the unknowns to the left side to obtain

−c2

−c1


0

12

xp 
−12e2t

0

To find a solution to the homogeneous solution we use the eigenvalue 2  i    i and the

corresponding eigenvector
1

−i


1

0
 i

0

−1
 a  ib.

Since

x1t  etcosta − sintb

x2t  etsinta costb

then

x1t  e2t cos t
1

0
− sin t

0

−1

x2t  e2t sin t
1

0
cos t

0

−1

Hence

xht  c1x1t  c2x2t

 c1
e2t cos t

e2t sin t
 c2

e2t sin t

−e2t cos t

Or, for the solution to the homogeneous equation, we may use one of the eigenvalues and eigenvectors
found in 2a to write a complex solution and break it into real and imaginary parts. we’ll use 2  i.
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x  e2it 1

−i
 e2tcos t  i sin t

1

−i


e2t cos t  ie2t sin t

e2t sin t − ie2t cos t

xh  c1
e2t cos t

e2t sin t
 c2

e2t sin t

−e2t cos t


e2t cos t e2t sin t

e2t sin t −e2t cos t

c1

c2

Finally, we add to obtain the desired solution.

x 
e2t cos t e2t sin t

e2t sin t −e2t cos t

c1

c2


−12e2t

0

Variation of Parameters (This material is not covered in Ma 227.)

Consider now the nonhomogeneous system

x′t  Atxt  ft     1

where the entries in At may be any continuous functions of t. Let Xt be a fundamental matrix for
the homogeneous system

x′t  Atxt     2

The general solution of 2 is

Xtc

where c is an n  1 constant vector. To find a particular solution of 1, consider

xpt  Xtvt

where vt is an n  1 vector function of t that we wish to determine. Then

xp
′ t  Xtv′t  X′tvt

so that 1 yields

Xtv′t  X′tvt  Atxpt  ft  AtXtvt  ft

Since Xt is a fundamental matrix for 2, then X′t  AXt, so the last equation becomes

Xtv′t  AtXtvt  AtXtvt  ft

or

Xtv′t  ft

Since the columns of Xt are linearly independent, X−1t exists and

v′t  X−1tft

24



Hence

vt  X−1tftdt

and

xpt  Xtvt  Xt X−1tftdt

Finally the general solution is given by

xt  xht  xpt  Xtc  Xt X−1tftdt     3

Example 2 Page 578
Solve the initial value problem

x′t 
2 −3

1 −2
xt 

e2t

1
, x0 

−1

0

Solution:
We first find a fundamental matrix for the homogeneous solution.

2 −3

1 −2
, eigenvectors:

1

1
↔ −1,

3

1
↔ 1

Xt 
3et e−t

et e−t

Hence
3et e−t

et e−t

−1


1

2et − 1
2et

− 1
2e−t

3
2e−t

 X−1

Formula 3 yields

xt 
3et e−t

et e−t
c1

c2


3et e−t

et e−t


1
2et − 1

2et

− 1
2e−t

3
2e−t

e2t

1
dt


3et e−t

et e−t
c1

c2


3et e−t

et e−t

1
2

et  1
2et

− 1
6

e3t  3
2e−t


3et e−t

et e−t
c1

c2


3et 1
2

et  1
2et  e−t − 1

6
e3t  3

2e−t

et 1
2

et  1
2et  e−t − 1

6
e3t  3

2e−t
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xt 
3et e−t

et e−t
c1

c2


3et 1
2

et  1
2et  e−t − 1

6
e3t  3

2e−t

et 1
2

et  1
2et  e−t − 1

6
e3t  3

2e−t

x0 
3c1  c2  13

3

c1  c2  7
3


−1

0

Thus

3c1  c2  13
3

 −1

c1  c2  7
3
 0

, Solution is: c2  − 5
6

,c1  − 3
2

. Finally

xt 
3et e−t

et e−t

− 3
2

− 5
6


3et 1

2
et  1

2et  e−t − 1
6

e3t  3
2e−t

et 1
2

et  1
2et  e−t − 1

6
e3t  3

2e−t



− 1
6

e2t 27e−t  5e−3t − 8 − 18e−2t

− 1
6

e2t 9e−t  5e−3t − 2 − 12e−2t

The Matrix Exponential Function (Not covered in 12F)
Recall that the general solution of the scalar equation x′t  axt where a is a constant is xt  ceat.
We will now see that the general solution of the normal system

x′t  Axt     1

where A is a constant n  n matrix is xt  eAtc. We must, of course, define eAt.

Definition: Let A be a constant n  n matrix. The we define

eAt  I  At  A2 t2

2!
  An tn

n!
 ∑

n0


An tn

n!
    2

This is an n  n matrix.

Remark: If D is a diagonal matrix, then the computation of eDt is straightforward.

Example

Let D 
−1 0

0 2
. Then
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D2 
1 0

0 4
, D3 

−1 0

0 8
, . . . . Dn 

−1n 0

0 2n

Therefore

eDt ∑
n0


Dn tn

n!


∑n0
 −1n tn

n!
0

0 ∑n0
 2n tn

n!


e−t 0

0 e2t

In general if D is an n  n diagonal matrix with r1, r2, . . . . , rn down its main diagonal, then eDt is the
diagonal matrix with er1t,er2t, . . . . ,ernt down its main diagonal.

It can be shown that the series 2 converges for all t and has many of the same properties as the scalar
exponential eat.

Remark: It can be shown that if a matrix A has n linearly independent eigenvectors, then P−1 AP is a
diagonal matrix, where P is formed from the n linearly independent eigenvectors of A. Thus

P−1AP  D     3

where D is a diagonal matrix. In fact, D has the eigenvalues of A along its diagonal.

Let A 

1 2 −1

1 0 1

4 −4 5

. Then

−1

1

4

↔ 3,

−1

1

2

↔ 1,

−2

1

4

↔ 2

Thus P 

−1 −1 −2

1 1 1

4 2 4

, inverse:

1 0 1
2

0 2 − 1
2

−1 −1 0

 P−1

Hence P−1AP 

1 0 1
2

0 2 − 1
2

−1 −1 0

1 2 −1

1 0 1

4 −4 5

−1 −1 −2

1 1 1

4 2 4



3 0 0

0 1 0

0 0 2

Now 3 implies that when A has n linearly independent eigenvalues we have

A  PDP−1

so that
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eAt  ePDP−1t  I  PDP−1t  1
2

PDP−1t PDP−1t 

 I  PDP−1t  1
2

PDP−1 PDP−1 t2 

 I  PDP−1t  1
2

PD2P−1 t2 

 P I  Dt  1
2
Dt2  P−1

 PeDtP−1

Example:

Let A 
5 4

−2 −1
, , eigenvectors:

−2

1
↔ 3,

−1

1
↔ 1

P 
−1 −2

1 1
,P−1 

1 2

−1 −1
and D 

1 0

0 3
. Show that A  P−1DP and use this to

compute eAt.

A  PDP−1 
−1 −2

1 1

1 0

0 3

1 2

−1 −1


5 4

−2 −1
as required.

Thus e

5 4

−2 −1
t


−et  2e3t 2e3t − 2et

−e3t  et 2et − e3t
from SNB.

Also PeDtP−1 
−1 −2

1 1
e

1 0

0 3
t

1 2

−1 −1
so

eAt  PeDtP−1 
−1 −2

1 1

et 0

0 e3t

1 2

−1 −1


−et  2e3t −2et  2e3t

et − e3t 2et − e3t

This eAt is a fundamental matrix for the system

x′t 
5 4

−2 −1
xt

since if we let
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xht  e

5 4

−2 −1
t

c1

c2


−et  2e3t −2et  2e3t

et − e3t 2et − e3t

c1

c2


c2 2e3t − 2et − c1 et − 2e3t

c1 et − e3t − c2 e3t − 2et


c2 2e3t − 2et − c1 et − 2e3t

c1 et − e3t − c2 e3t − 2et

then

xh
′ t 

c2 6e3t − 2et − c1 et − 6e3t

c1 et − 3e3t − c2 3e3t − 2et

and

Axht 
5 4

−2 −1

c2 2e3t − 2et − c1 et − 2e3t

c1 et − e3t − c2 e3t − 2et


4c1 et − e3t − 5c1 et − 2e3t − 4c2 e3t − 2et  5c2 2e3t − 2et

2c1 et − 2e3t − c1 et − e3t  c2 e3t − 2et − 2c2 2e3t − 2et


6c1e3t − 2c2et − c1et  6c2e3t

c1et  2c2et − 3c1e3t − 3c2e3t


c2 6e3t − 2et − c1 et − 6e3t

c1 et − 3e3t − c2 3e3t − 2et
 xh

′ t

:

Theorem 5 (Properties of the Matrix Exponential Function)
Let A and B be n  n constant matrices and r, s and t be real (or complex) numbers. Then
1. a. eA0  e0  I

b. eAts  eAteAs

c. eAt −1  e−At

d. eABt  eAteBt provided that AB  BA
e. erIt  ertI

f. d
dt

eAt  AeAt

Remark: c. tells us that the matrix eAt has an inverse.

Proof of f.
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d
dt

eAt  d
dt

I  At  A2 t2

2!
  An tn

n!


 A  A2t  A3 t2

2!
  An tn−1

n − 1!
  A I  At  A2 t2

2!
  An tn

n!


 AeAt

Theorem 6 (eAt is a Fundamental Matrix)
If A is an n  n constant matrix, then the columns of the matrix eAt form a fundamental solution set for
the system x′t  Axt. Therefore, eAt is a fundamental matrix for the system, and a general solution
is xt  eAtc.

Lemma (Relationship Between Fundamental Matrices)
Let Xt and Yt be two fundamental matrices for the same system x′  Ax. Then there exists a
constant column matrix C such that Yt  XtC.

Remark: Let Yt  eAt  XtC and set t  0. Then

I  X0C  C  X0−1

and

eAt  XtX0−1

If the nxn matrix A has n linearly independent eigenvectors ui, then er1tu1,er2tu2,… ,ernt  is a
fundamental matrix for x′  Ax and

eAt  er1tu1,er2tu2,… ,ernt u1,u2,… ,un −1

Calculating eAt for Nilpotent Matrices

Definition: An nxn matrix A matrix is nilpotent if for some positive integer k

Ak  0.

Since

eAt  I  At  A2 t2

2!
  An tn

n!
 ∑

n0


An tn

n!

we see that if A is nilpotent, then the infinite series has only a finite number of terms since
Ak  Ak1    0 and in this case

eAt  I  At  A2 t2

2!
  Ak−1 tk−1

k − 1!

This may be taken further. The Cayley-Hamilton Theorem says that a matrix satisfies its own
characteristic equation, that is, pA  0. Therefore, if the characteristic polynomial for A has the form
pr  −1nr − r1n, that is A has only one multiple eigenvalue r1, then
pA  −1nA − r1In  0. Hence A − r1I is nilpotent and

eAt  er1IA−r1It  er1IteA−r1It  er1t I  A − r1It   A − r1In−1 tn−1

n − 1!

Example Find the fundamental matrix eAt for the system
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x′t  Axt where A 

2 1 1

1 2 1

−2 −2 −1

Solution: The characteristic polynomial for A is

pr  det

2 − r 1 1

1 2 − r 1

−2 −2 −1 − r

 −r3  3r2 − 3r  1  −r − 13

Hence r  1 is an eigenvalue of A with multiplicity 3. By the Cayley-Hamilton Theorem A − I3  0
and

eAt  eteA−It  et I  A − It  A − I2 t2

2!

A − I 

1 1 1

1 1 1

−2 −2 −2

and A − I2 

0 0 0

0 0 0

0 0 0

Thus

eAt  et

1 0 0

0 1 0

0 0 1

 tet

1 1 1

1 1 1

−2 −2 −2



et  tet tet tet

tet et  tet tet

−2tet −2tet et − 2et

31


