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1

Algebraic and Geometric Preliminaries

The mathematician Euler once said, “God made integers, all else is the work
of man.” In this chapter, we have advanced in the evolutionary process to
the real number system. We partially characterize the real numbers and then,
alas, find an imperfection. The quadratic equation x2 +1 = 0 has no solution.

A new day arrives, the complex number system is born. We view a complex
number in several ways: as an element in a field, as a point in the plane, and
as a two-dimensional vector. Each way is useful and in each way we see an
unmistakable resemblance of the complex number system to its parent, the
real number system. The child seems superior to its parent in every way except
one—it has no order. This sobering realization creates a new respect for the
almost discarded parent.

The moral of this chapter is clear. As long as the child follows certain
guidelines set down by its parent, it can move in new directions and teach us
many things that the parent never knew.

1.1 The Complex Field

We begin our study by giving a very brief motivation for the origin of complex
numbers. If all we knew were positive integers, then we could not solve the
equation x+2 = 1. The introduction of negative integers enables us to obtain
a solution. However, knowledge of every integer is not sufficient for solving
the equation 2x − 1 = 2. A solution to this equation requires the study of
rational numbers.

While all linear equations with integers coefficients have rational solutions,
there are some quadratics that do not. For instance, irrational numbers are
needed to solve x2 − 2 = 0. Going one step further, we can find quadratic
equations that have no real (rational or irrational) solutions. The equation
x2 + 1 = 0 has no real solutions because the square of any real number
is nonnegative. In order to solve this equation, we must “invent” a number
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whose square is −1. This number, which we shall denote by i =
√−1, is called

an imaginary unit.
Our sense of logic rebels against just “making up” a number that solves a

particular equation. In order to place this whole discussion in a more rigorous
setting, we will define operations involving combinations of real numbers and
imaginary units. These operations will be shown to conform, as much as possi-
ble, to the usual rules for the addition and multiplication of real numbers. We
may express any ordered pair of real numbers (a, b) as the “complex number”

a + bi or a + ib. (1.1)

The set of complex numbers is thus defined as the set of all ordered pairs
of real numbers. The notion of equality and the operations of addition and
multiplication are defined as follows:1

(a1, b1) = (a2, b2)⇐⇒ a1 = a2, b1 = b2,

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),
(a1, b1)(a2, b2) = (a1a2 − b1b2, a1b2 + a2b1).

The definition for the multiplication is more natural than it appears to be,
for if we denote the complex numbers of the form (1.1), multiply as we would
real numbers, and use the relation i2 = −1, we obtain

(a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(a1b2 + a2b1).

Several observations should be made at this point. First, note that the formal
operations for addition and multiplication of complex numbers do not depend
on an imaginary number i. For instance, the relation i2 = −1 can be expressed
as (0, 1)(0, 1) = (−1, 0). The symbol i has been introduced purely as a matter
of notational convenience. Also, note that the order pair (a, 0) represents the
real number a, and that the relations

(a, 0) + (b, 0) = (a + b, 0) and (a, 0)(b, 0) = (ab, 0)

are, respectively, addition and multiplication of real numbers. Some of the
essential properties of real numbers are as follows: Both the sum and product
of real numbers are real numbers, and the order in which either operation is
performed may be reversed. That is, for real numbers a and b, we have the
commutative laws

a + b = b + a and a · b = b · a. (1.2)

The associative laws

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c, (1.3)

1 The symbol ⇐⇒ stands for “if and only if” or “equivalent to.”
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and the distributive law

a · (b + c) = a · b + a · c (1.4)

also holds for all real numbers a, b, and c. The numbers 0 and 1 are, respec-
tively, the additive and multiplicative identities. The additive inverse of a is
−a, and the multiplicative inverse of a ( �= 0) is the real number a−1 = 1/a.
Stated more concisely, the real numbers form a field under the operations of
addition and multiplication.

Of course, the real numbers are not the only system that forms a field.
The rational numbers are easily seen to satisfy the above conditions for a
field. What is important in this chapter is that the complex numbers also
form a field. The additive identity is (0, 0), and the additive inverse of (a, b)
is (−a,−b). The multiplicative inverse of (a, b) �= (0, 0) is(

a

a2 + b2
,− b

a2 + b2

)
.

We leave the confirmation that the complex numbers satisfy all the axioms
for a field as an exercise for the reader.

The discerning math student should not be satisfied with the mere veri-
fication of a proof. He/she should also have a “feeling” as to why the proof
works. Did the reader ask why the multiplicative inverse of (a, b) might be
expected to be (

a

a2 + b2
,− b

a2 + b2

)
?

Let us go through a possible line of reasoning. If we write the inverse of
(a, b) = a + bi as

(a + ib)−1 =
1

a + ib
,

then we want to find a complex number c + di such that

1
a + ib

= c + id.

By cross multiplying, we obtain ac + i2bd + i(ad + bc) = 1, or{
ac− bd = 1,
ad + bc = 0.

The solution to these simultaneous equation is

c =
a

a2 + b2
, d = − b

a2 + b2
.

Can the reader think of other reasons to suspect that
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(a, b)−1 =
(

a

a2 + b2
,− b

a2 + b2

)
?

Let z = (x, y) be a complex number. Then x and y are called the real part of
z, Re z, and the imaginary part of z, Im z, respectively. Denote the set of real
numbers by R and the set of complex numbers by C. There is a one-to-one
correspondence between R and a subset of C, represented by x ↔ (x, 0) for
x ∈ R, which preserves the operations of addition and multiplication. Hence
we will use the real number x and the ordered pair (x, 0) interchangeably.
We will also denote the ordered pair (0, 1) by i. Because a complex number
is an ordered pair of real numbers, we use the terms C = R

2 or C = R × R
interchangeably. Thus R× 0 is a subset of C consisting of the real numbers.

As noted earlier, an advantage of the field C is that it contains a root
of z2 + 1 = 0. In Chapter 8 we will show that any polynomial equation
a0 + a1z + · · · + anz

n = 0 has a solution in C. But this extension from R to
C is not without drawbacks. There is an important property of the real field
that the complex field lacks. If a ∈ R, then exactly one of the following is
true:

a = 0, a > 0, −a > 0 (trichotomy).

Furthermore, the sum and the product of two positive real numbers is positive
(closure).

A field with an order relation < that satisfies the trichotomy law and these
two additional conditions is said to be ordered. In an ordered field, like the
real or rational numbers, we are furnished with a natural way to compare any
two elements a and b. Either a is less than b (a < b), or a is equal to b (a = b),
or a is greater than b (a > b). Unfortunately, no such relation can be imposed
on the complex numbers, for suppose the complex numbers are ordered; then
either i or −i is positive. According to the closure rule, i2 = (−i)2 = −1 is
also positive. But 1 must be negative if −1 is positive. However, this violates
the closure rule because (−1)2 = 1.

To sum up, there is a complex field that contains a real field that contains a
rational field. There are advantages and disadvantages to studying each field.
It is not our purpose here to state properties that uniquely determine each
field, although this most certainly can be done.

Questions 1.1.

1. Can a field be finite?
2. Can an ordered field be finite?
3. Are there fields that properly contain the rationals and are properly

contained in the reals?
4. When are two complex numbers z1 and z2 equal?
5. What complex numbers may be added to or multiplied by the complex

number a + ib to obtain a real number?
6. How can we separate the quotient of two complex numbers into its real

and imaginary parts?
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7. What can we say about the real part of the sum of the two complex
numbers? What about the product?

8. What kind of implications are there in defining a complex number as
an ordered pair?

9. If a polynomial of degree n has at least one solution, can we say more?
10. If we try to define an ordering of the complex numbers by saying that

(a, b) > (c, d) if a > b and c > d, what order properties are violated?
11. Can any ordered field have a solution to x2 + 1 = 0?

Exercises 1.2.

1. Show that the set of real numbers of the form a + b
√

2, where a and b
are rational, is an ordered field.

2. If a and b are elements in a field, show that ab = 0 if and only if either
a = 0 or b = 0.

3. Suppose a and b are elements in an ordered field, with a < b. Show that
there are infinitely many elements between a and b.

4. Find the values of

(a) (−2, 3)(4,−1) (b) (1 + 2i){3(2 + i)− 2(3 + 6i)}
(c) (1 + i)3 (d) (1 + i)4

(e) (1 + i)n − (1− i)n.
5. Express the following in the form x + iy:

(a) (1 + i)−5 (b) (3− 2i)/(1− i)
(c) eiπ/2 +

√
2eiπ/4 (d) (1 + i)eiπ/6

(e)
a + ib

a− ib
− a− ib

a + ib
(f)

3 + 5i
7 + i

+
1 + i

4 + 3i

(g) (2 + i)2 + (2− i)2 (h)
(4 + 3i)

√
3 + 4i

3 + i

(i)
(ai40 − i17)
−1 + i

, (a−real) (j) (−1 + i
√

3)60

(k)
√

1 + a2 + ia

a− i
√

1 + a2
, (a−real) (l)

(
√

3− i)2(1 + i)5

(
√

3 + i)4
.

6. Show that (
−1±√3

2

)3

= 1 and

(
±1± i

√
3

2

)6

= 1

for all combinations of signs.
7. For any integers k and n, show that in = in+4k. How many distinct

values can be assumed by in?

1.2 Rectangular Representation

Just as a real number x may be represented by a point on a line, so may a
complex number z = (x, y) be represented by a point in the plane (Figure 1.1).
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0

y

y

z = (x, y )= x + iy

x x

Figure 1.1. Cartesian representation of z in plane

Each complex number corresponds to one and only one point. Thus the
terms complex number and point in the plane are used interchangeably. The
x and y axes are referred to as the real axis and the imaginary axis, while the
xy plane is called the complex plane or the z plane.

There is yet another interpretation of the complex numbers. Each point
(x, y) of the complex plane determines a two-dimensional vector (directed line
segment) from (0, 0), the initial point, to (x, y), the terminal point. Thus the
complex number may be represented by a vector. This seems natural in that
the definition chosen for addition of complex numbers corresponds to vector
addition; that is,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Geometrically, vector addition follows the so-called parallelogram rule, which
we illustrate in Figure 1.2. From the point z1, construct a vector equal in
magnitude and direction to the vector z2. The terminal point is the vector
z1 + z2. Alternatively, if a vector equal in magnitude and direction to z1 is
joined to the vector z2, the same terminal point is reached. This illustrates
the commutative property of vector addition. Note that the vector z1 + z2
is a diagonal of the parallelogram formed. What would the other diagonal
represent?

Figure 1.2. Illustration for parallelogram law
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Figure 1.3. Modulus of a complex number z

By the magnitude (length) of the vector (x, y) we mean the distance of
the point z = (x, y) from the origin. This distance is called the modulus
or absolute value of the complex number z, and denoted by |z|; its value is√
x2 + y2. For each positive real number r, there are infinitely many distinct

values (x, y) whose absolute value is r = |z|, namely the points on the circle
x2 + y2 = r2. Two of these points, (r, 0) and (−r, 0), are real numbers so that
this definition agrees with the definition for the absolute value in the real field
(see Figure 1.3).

Note that, for z = (x, y),{ |x| = |Re z| ≤ |z|,
|y| = |Im z| ≤ |z|.

The distance between any two points z1 = (x1, y1) and z2 = (x2, y2) is

|z2 − z1| =
√

(x2 − x1)2 + (y2 − y1)2.

The triangle inequalities { |z1 + z2| ≤ |z1|+ |z2|,
|z1 − z2| ≥ | |z1| − |z2| |

say, geometrically, that no side of a triangle is greater in length than the
sum of the lengths of the other two sides, or less than the difference of the
lengths of the other two sides (Figure 1.2). The algebraic verification of these
inequalities is left to the reader.

Among all points whose absolute value is the same as that of z = (x, y),
there is one which plays a special role. The point (x,−y) is called the conjugate
of z and is denoted by z. If we view the real axis as a two-way mirror, then z
is the mirror image of z (Figure 1.4).

From the definitions we obtain the following properties of the conjugate:
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Figure 1.4. Mirror image of complex numbers

{
z1 + z2 = z1 + z2,

z1z2 = z1z2.
(1.5)

Some of the important relationships between a complex number z = (x, y)
and its conjugates are ⎧⎪⎪⎨

⎪⎪⎩
z + z = (2x, 0) = 2Re z,
z − z = (0, 2y) = 2iIm z,

|z| = |z| =
√
x2 + y2,

zz = |z|2.
(1.6)

The squared form of the absolute value in (1.6) is often the most workable.
For example, to prove that the absolute value of the product of two complex
numbers is equal to the product of their absolute values, we write

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1z2) = (z1z1)(z2z2) = (|z1| |z2|)2.

Moreover, the conjugate furnishes us with a method of separating the inverse
of a complex number into its real and imaginary parts:

(a + bi)−1 =
1

a + bi
· a + bi

a + bi
=

a− bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

Equation of a line in C. Now we may rewrite the equation of a straight
line in the plane, with the real and imaginary axes as axes of coordinates, as

ax + by + c = 0, a, b, c ∈ R; i.e., a
(
z + z

2

)
+ b

(
z − z

2i

)
+ c = 0,
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where at least one of a, b is nonzero. That is,

(a− ib)z + (a + ib)z + 2c = 0.

Conversely, by retracing the steps above, we see that

αz + βz + γ = 0 (1.7)

represents a straight line provided α = β, α �= 0 and γ is real.

Equation of a circle in C. A circle in C is the set of all point equidistant
from a given point, the center. The standard equation of a circle in the xy
plane with center at (a, b) and radius r > 0 is (x− a)2 + (y − b)2 = r2. If we
transform this by means of the substitution z = x + iy, z0 = a + ib, then we
have z − z0 = (x− a) + i(y − b) so that

(z − z0)(z − z0) = |z − z0|2 = (x− a)2 + (y − b)2 = r2.

Therefore, the equation of the circle in the complex form with center z0 and
radius r is |z − z0| = r. In complex notation we may rewrite this as

zz − (zz0 + zz0) + z0z0 = r2, i.e. zz − 2Re [z(a− ib)] + a2 + b2 − r2 = 0,

where z0 = a + ib. Thus, in general, writing a− ib = β and γ = a2 + b2 − r2,
we see that

α|z|2 + βz + βz + γ = 0, i.e.
∣∣∣∣z +

β

α

∣∣∣∣
2

=
|β|2 − αγ

α2
, (1.8)

represents a circle provided α, γ are real, α �= 0 and |β|2 − αγ > 0.
The formulas in (1.6) produce

|z1 + z2|2 = |z1|2 + 2Re (z1z2) + |z2|2. (1.9)

Also, for two complex numbers z1 and z2, we have

(i) |1− z1z2|2 − |z1 − z2|2 = (1 + |z1| |z2|)2 − (|z1|+ |z2|)2, since2

L.H.S = (1− z1z2)(1− z1z2)− (z1 − z2)(z1 − z2)
= 1− (z1z2 + z1z2) + |z1z2|2

− (|z1|2 + |z2|2 − z1z2 − z1z2)
= 1 + |z1z2|2 − (|z1|2 + |z2|2)
= (1− |z1|2)(1− |z2|2)
= R.H.S.

Further, it is also clear from (i) that if |z1| < 1 and |z2| < 1, then
2 L.H.S is to mean left-hand side and R.H.S is to mean right-hand side.
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|z1 − z2| < |1− z1z2|

and if either |z1| = 1 or |z2| = 1, then

|z1 − z2| = |1− z1z2|.

(ii) |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) (Parallelogram identity ); for,

L.H.S = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)
= [|z1|2 + (z1z2 + z1z2) + |z2|2]

+ [|z1|2 − (z1z2 + z1z2) + |z2|2]
= R.H.S.

Example 1.3. Let us use the triangle inequality to find upper and lower
bounds for |z4 − 3z + 1|−1 whenever |z| = 2. To do this, we need to find m
and M so that m ≤ |z4−3z+1|−1 ≤M for |z| = 2. As |3z−1| ≤ 3|z|+1 = 7
for |z| = 2, we have

|z4 − 3z + 1| ≥ | |z4| − |3z − 1| | ≥ 24 − 7 = 9

and |z4 − 3z + 1| ≤ |z|4 + |3z − 1| = 24 + 7 = 23. Thus, for |z| = 2, we have

1
23
≤ |z4 − 3z + 1|−1 ≤ 1

9
. •

Example 1.4. Suppose that we wish to find all circles that are orthogonal to
both |z| = 1 and |z − 1| = 4. To do this, we consider two circles:

C1 = {z : |z − α1| = r1}, C2 = {z : |z − α2| = r2}.

These two circles are orthogonal to each other if (see Figure 1.5)

r21 + r22 = |α1 − α2|2.

In view of this observation, the conditions for which a circle |z − α| = R is
orthogonal to both |z| = 1 and |z − 1| = 4 are given by

1 + R2 = |α− 0|2 and 42 + R2 = |α− 1|2 = 1 + |α|2 − 2Reα

which give R = (|α|2 − 1)1/2 and Reα = −7. Consequently,

α = −7 + ib and R = (49 + b2 − 1)1/2 = (48 + b2)1/2

and the desired circles are given by

Cb : |z − (−7 + ib)| = (48 + b2)1/2, b ∈ R. •
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Example 1.5. We wish to show that triangle 
ABC with vertices z1, z2, z3
is equilateral if and only if

z21 + z22 + z23 = z1z2 + z2z3 + z3z1. (1.10)

To do this, we let α = z2−z1, β = z3−z2, and γ = z1−z3 so that α+β+γ = 0.
Further, if 
ABC is equilateral, then (see Figure 1.6)

α + β + γ = 0⇐⇒ α + β + γ = 0

⇐⇒ αα

α
+

ββ

β
+

γγ

γ
= 0

⇐⇒ 1
α

+
1
β

+
1
γ

= 0 (∵ |α| = |β| = |γ|)

⇐⇒ 1
z2 − z1

+
1

z3 − z2
+

1
z1 − z3

= 0

⇐⇒ (z3 − z2)(z1 − z3) + (z2 − z1)(z1 − z3)
+ (z2 − z1)(z3 − z2) = 0

⇐⇒ z21 + z22 + z23 = z1z2 + z2z3 + z3z1.

Conversely, suppose that (1.10) holds. Then

1
α

+
1
β

+
1
γ

= 0 =⇒ αβ + βγ + γα = 0

=⇒ αβ + γ(−γ) = 0, since α + β = −γ,
=⇒ αβ = γ2.

Thus, αβ = γ2. Similarly, βγ = α2 and γα = β2. Further,

(αβ)(αβ) = γ2(γ)2, i.e., (αα)(ββ)(γγ) = (γγ)3.

Because of the symmetry, we also have

Figure 1.5. Orthogonal circles
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Figure 1.6. Equilateral triangle �ABC

(αα)(ββ)(γγ) = (αα)3 and (αα)(ββ)(γγ) = (ββ)3.

Thus,

1
α

+
1
β

+
1
γ

= 0 =⇒ |α|3 = |β|3 = |γ|3 =⇒ |α| = |β| = |γ|,

showing that 
ABC is equilateral.
Here is an alternate proof. First we remark that equilateral triangles are

preserved under linear transformations f(z) = az + b, which can be easily
verified by replacing zj by azj + b (j = 1, 2, 3) in (1.10). By a suitable trans-
formation, we can reduce the problem to a simpler one. If z1, z2, z3 are the
vertices of a degenerated equilateral triangle (i.e., z1 = z2 = z3), then (1.10)
holds. If two of the vertices are distinct, then, by a suitable transformation,
we can take z1 = 0 and z2 = 1. Then (1.10) takes the form 1+ z23 = z3, which
gives

z3 =
1 + i

√
3

2
or

1− i
√

3
2

.

In either case {0, 1, z3} forms vertices of an equilateral triangle. •
Example 1.6. Suppose we wish to describe geometrically the set S given by

S = {z : |z − a| − |z + a| = 2c} (0 �= a ∈ C, c ≥ 0), (1.11)

for the following situations:

(i) c > |a| (ii) c = 0 (iii) 0 < c < a (iv) c = a > 0.

The triangle inequality gives that

|2a| = |z − a− (z + a)| ≥ |z − a| − |z + a| = 2c, i.e., c ≤ |a|.
Thus, there are no complex numbers satisfying (1.11) if c > |a|. Hence, S = ∅
whenever c > |a|.
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If c = 0, we have |z − a| = |z + a| which shows that S is the line that is
the perpendicular bisector of the line joining a and −a.

Next, we consider the case a > c > 0. Then, writing z = x + iy,

|z − a| − |z + a| = 2c⇐⇒ |z − a|2 = (2c + |z + a|)2
⇐⇒ |z − a|2 = 4c2 + |z + a|2 + 4c|z + a|
⇐⇒ c|z + a|+ c2 = −aRe z (Re z < 0)
⇐⇒ c2[|z|2 + a2 + 2aRe z] = (c2 + aRe z)2

⇐⇒ c2|z|2 − a2(Re z)2 = c2(c2 − a2)

⇐⇒ x2

c2
− y2

a2 − c2
= 1.

Further, we observe that for |z − a| − |z + a| to be positive, we must have
Re z < 0. Thus, if a > c > 0 we have

S =
{
x + iy :

x2

c2
− y2

a2 − c2
= 1

}

and so S describes a hyperbola with focii at a,−a.
Finally, if c = a then

|z − a| − |z + a| = 2a ⇐⇒ |z + a| = −Re (z + a) =⇒ Re (z + a) < 0

and therefore, S in this case is the interval (−∞,−a]. •
Questions 1.7.

1. In Figure 1.2, would we still have a parallelogram if the vector z2 were
in the same or the opposite direction as that of z1?

2. Geometrically, can we predict the quadrant of z1+z2 from our knowledge
of z1 and z2?

3. Why don’t we define multiplication of complex numbers as vector mul-
tiplication?

4. When does the triangle inequality become an equality?
5. What would be the geometric interpretation of the inequality for the

sum of n complex numbers?
6. Name some interesting relationships between the points (x, y) and

(−x, y).
7. If a and b are positive rational numbers, why might we want to call the

numbers
√
a +
√
b and

√
a−√b real conjugates?

8. Is every rational number algebraic? Are
√

3 and 5
√

5− 3i algebraic?
Note: A number is algebraic if it is a solution of a polynomial (in z)
with integer coefficients. Numbers which are not algebraic are called
transcendental numbers.

9. What does |z|2 + βz + βz + γ = 0 represent if |β|2 ≥ γ?
10. Is |z + 1|+ |z − 1| ≤ 2

√
2 if |z| ≤ 1?
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Exercises 1.8.

1. If z1 = 3− 4i and z2 = −2 + 3i, obtain graphically and analytically
(a) 2z1 + 4z2
(d) |z1 + z2|

(b) 3z1 − 2z2
(e) |z1 − z2|

(c) z1 − z2 − 4
(f) |2z1+3z2−1|.

2. Let z1 = x1 + iay1 and z2 = x2 − ib/y1, where a, b are real. Determine
a condition on y1 so that z−11 + z−12 is real.

3. Identify all the points in the complex plane that satisfy the following
relations.
(a) 1 < |z| ≤ 3
(c) |z − 1|+ |z + 1| = 2
(e) Re z2 > 0
(g) Re ((1− i)z) = 2
(i) Re (z) = |z|
(k) z = 5/(z − 1) (z �= 1)

(b) |(z − 3)/(z + 3)| < 2
(d) Re (z − 5) = |z|+ 5
(f) Im z2 > 0
(h) |z − i| = Re z
(j) Re (z2) = 1
(l) [Im (iz)]2 = 1.

4. Let |(z − a)/(z − b)| = M , where a and b are complex constants and
M > 0. Describe this curve and explain what happens as M → 0 and
as M →∞.

5. Find a complex form for the hyperbola with real equation 9x2−4y2 = 36.
6. If |z| < 1, prove that

(a) Re
(

1
1− z

)
>

1
2

(b) Re
(

z

1− z

)
> −1

2
(c) Re

(
1 + z

1− z

)
> 0.

7. If P (z) is a polynomial equation with real coefficients, show that z1 is a
root if and only if z1 is a root. Conclude that any polynomial equation
of odd degree with real coefficients must have at least one real root. Can
you prove this using elementary calculus?

8. Prove that, for every n ≥ 1,

|z1 + z2 + · · · + zn| ≤ |z1|+ |z2|+ · · · + |zn|.

9. Let a1, a2, . . . , an and b1, b2, . . . , bn be complex numbers. Prove the
Schwarz inequality,∣∣∣∣∣

n∑
k=1

akbk

∣∣∣∣∣
2

≤
(

n∑
k=1

|ak|2
)(

n∑
k=1

|bk|2|
)
.

When will equality hold?
10. Define e(α) = cosα + i sinα, for α real. Prove the following.

(a) e(0) = 1
(c) e(α1 + α2) = e(α1)e(α2)

(b) |e(α)| = 1
(d) e(nα) = [e(α)]n.

Which of these properties does the real-valued function f(x) = ex

satisfy?
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11. Show that the line connecting the complex numbers z1 and z2 is per-
pendicular to the line connecting z3 and z4 if and only if

Re {(z1 − z2)(z3 − z4)} = 0.

12. If a, b are real numbers in the unit interval (0, 1), then when do the three
points z1 = a + i, z2 = 1 + ib and z3 = 0 form an equilateral triangle?

13. If |zj | = 1 (j = 1, 2, 3) such that z1 + z2 + z3 = 0, then show that zj ’s
are the vertices of an equilateral triangle.

1.3 Polar Representation

In Section 1.2, the magnitude of the vector z = x + iy was discussed. What
about its direction? A measurement of the angle θ that the vector z ( �= 0)
makes with the positive real axis is called an argument of z (see Figure 1.7).
Thus, we may express the point z = (x, y) in the “new” form

(r cos θ, r sin θ).

This, of course, is just the polar coordinate representation for the complex
number z. We have the familiar relations

r = |z| =
√
x2 + y2 and tan θ =

y

x
.

The real numbers r and θ, like x and y, uniquely determine the complex num-
ber z. Unfortunately, the converse isn’t completely true. While z uniquely
determines the x and y, hence r, the value of θ is determined up to a multi-
ple of 2π. There are infinitely many distinct arguments for a given complex
number z, and the symbol arg z is used to indicate any one of them. Thus the
arguments of the complex number (2, 2) are

π

4
+ 2kπ (k = 0,±1,±2, . . . ).

This inconvenience can sometimes (although not always) be ignored by distin-
guishing (arbitrarily) one particular value of arg z. We use the symbol Arg z
to stand for the unique determination of θ for which −π < arg z ≤ π. This θ
is called the principal value of the argument. To illustrate,

Arg (2, 2) =
π

4
, Arg (0,−5) = −π

2
, Arg (−1,

√
3) =

2π
3
.

Note that Re z > 0 is equivalent to |Arg z| < π/2. If x = y = 0, the expression
tan θ = y/x has no meaning. For this reason, arg z is not defined when z = 0.

Suppose that z1 and z2 have the polar representations

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).
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Figure 1.7. Polar representation of z and z1z2

Then

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1)]
= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Loosely speaking, we may say that the argument of the product of two nonzero
complex numbers is equal to the sum of their arguments; that is,

arg(z1z2) = arg z1 + arg z2. (1.12)

We understand (1.12) to mean that if θ1 is one of the values of arg z1 and θ2
is one of the values of arg z2, then θ1 + θ2 is one of the values of arg(z1z2).
Since (1.12) is valid only up to a multiple of 2π, a more explicit formulation
is

arg z1z2 = arg z1 + arg z2 + 2kπ (k an integer)

or
arg z1z2 = arg z1 + arg z2 (mod 2π)

(see Figure 1.7). To illustrate, we observe that if z = (−1 + i
√

3)/2, then
z2 = (−1− i

√
3)/2 so that

Arg z =
2π
3

and Arg (z2) = −2π
3
.

Thus, Arg (z.z) = Arg z + Arg z − 2π.
An induction argument (no pun intended) shows that if zi has modulus ri

and argument θi (i = 1, 2, . . . , n), then

z1z2 · · · zn = r1r2 · · · rn[cos(θ1 + θ2 + · · · + θn) (1.13)
+i sin(θ1 + θ2 + · · · + θn)].

Example 1.9. Let z1 = 1 + i and z2 =
√

3 + i. We wish to express them
in polar form and then verify the identities that hold for multiplication and
division of z1 and z2, respectively. To do this, we may write

z1 =
√

2eiπ/4 and z2 = 2eiπ/6.
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Figure 1.8. Geometric proof for Example 1.10

Then
z1z2 = 2

√
2ei5π/12 and

z1
z2

=
1√
2
eiπ/12.

Thus, in this particular problem of product and division, it follows that

Arg (z1z2) = Arg z1 + Arg z2 and Arg
(
z1
z2

)
= Arg z1 −Arg z2.

Similarly, we may easily check the following:

(i) (1− i
√

3)/(1 + i
√

3) = eiθ, θ = 2π/3 + 2kπ ;
(ii) (−√3 + i)(1 + i)/(1 + i

√
3) =

√
2eiθ, θ = 3π/4 + 2kπ ;

(iii) (1− 3i)/(2− i) =
√

2eiθ, θ = −π/4 + 2kπ,

where k is an integer. •
Example 1.10. Suppose that z1 and z2 are two nonzero complex numbers
such that |z1| = |z2| but z1 �= ±z2. Then we wish to show that the quotient
(z1 + z2)/(z1 − z2) is a purely imaginary number. For a geometric proof, we
consider the parallelogram OPRQ shown in Figure 1.8. Since the sides OP
and OQ are equal in length, OPRQ is a rhombus. Thus, the vector −→OR is
perpendicular to the vector −→PQ, and so

Arg (z1 + z2) = Arg (z1 − z2)± iπ/2.

For an analytic proof, we may rewrite

w =
z1 + z2
z1 − z2

=
1 + z

1− z
(z = z2/z1).

The hypotheses imply that |z| = 1, z �= ±1. Therefore, letting z = eiθ with
θ ∈ (0, 2π)\{π},

w =
1 + eiθ

1− eiθ
=

e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
=

2 cos(θ/2)
−2i sin(θ/2)

= i cot (θ/2),

which is a purely imaginary number. •
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Example 1.11. Let z = sin θ + i cos 2θ and w = cos θ + i sin 2θ. We wish to
show that there exists no value of θ for which z = w. To do this, we first note
that

z = w ⇐⇒ sin θ = cos θ and cos 2θ = sin 2θ.

There exists no values of θ satisfying both conditions, because sin θ = cos θ
implies that cos 2θ = cos2 θ − sin2 θ = 0, and so the second condition reduces
to sin 2θ = 2 sin θ cos θ = 0, i.e., sin θ = 0 = cos θ. •
Remark 1.12. Geometric considerations (Figures 1.2 and 1.7) indicate that
the rectangular representation will frequently be more useful for problems
involving sums of complex numbers, with polar representation being more
useful for problems involving products. •

If we let z1 = z2 = · · · = zn in (1.13), we obtain

zn = rn(cosnθ + i sinnθ). (1.14)

For |z| = 1 (the unit circle), (1.14) reduces to

(cos θ + i sin θ)n = cosnθ + i sinnθ, (1.15)

a theorem of DeMoivre.
The possibility of finding nth roots of the complex number is suggested by

(1.14). A complex number z is an nth root of z0 if zn = z0, written z = z
1/n
0 .

The problem is to reverse the multiplicative operation and determine a
number which, when multiplied by itself n times, furnishes us with the original
number. Given a complex number z0 = r0(cos θ0 + i sin θ0), how do you find a
complex number z = r(cos θ + i sin θ) such that zn = z0? By (1.14), we must
have

rn(cosnθ + i sinnθ) = r0(cos θ0 + i sin θ0). (1.16)

Since | cosα + i sinα| = 1 for all real α, (1.16) yields the relations

rn = r0, cosnθ + i sinnθ = cos θ0 + i sin θ0. (1.17)

The first relation in (1.17) shows that |z| = r
1/n
0 , which we already knew

(why)? But the second gives important information about the argument of
z, namely, that n arg z differs from arg z0 by a multiple of 2π (that is, nθ =
θ0 + 2kπ, k = 0,±1,±2, . . . ):

θ =
θ0 + 2kπ

n
. (1.18)

How many integers k in (1.18) produce distinct solutions? We have

z = z
1/n
0 = r

1/n
0

{
cos

(
θ0 + 2kπ

n

)
+ i sin

(
θ0 + 2kπ

n

)}
. (1.19)
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For each k (k = 0, 1, 2, . . . , n− 1), there is a different value for z. We leave it
for the reader to verify that there are no more solutions. Thus, given z0 �= 0,
there are exactly n distinct complex numbers z such that zn = z0.

By letting z0 = 1 in (1.19), we may find the nth roots of unity. If zn = 1,
then

z = cos
(

2kπ
n

)
+ i sin

(
2kπ
n

)
(k = 0, 1, 2, . . . , n− 1). (1.20)

Geometrically, the solutions represent the n vertices of a regular polygon of
n sides inscribed in a circle with center at the origin and radius equal to one.
See Figures 1.9 and 1.10 for the inscribed square and pentagon.

By (1.20), the difference in the arguments of any two successive nth roots
of unity is constant (2π/n). If we let

ω = cos
2π
n

+ i sin
2π
n
,

then each root of unity may be expressed as a multiple of ω; that is,

ω, ω2, ω3, . . . , ωn−1, ωn = ω0 = 1.

This gives interesting information about the sums and products of the roots of
the unity, namely, that the product of any two roots of unity is also a root of
unity, and that the sum of all nth roots of unity is zero. The latter statement
follows from the identify

1 + ω + ω2 + · · · + ωn−1 =
1− ωn

1− ω
.

Using (1.19), we easily see, for instance, the following:

(a) ∗√3 + 4i = ±(2 + i)
(b) ∗√−3 + 4i = ±(1 + 2i)

Figure 1.9. Illustration for the 4th roots of unity
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Figure 1.10. Illustration for the 5th roots of unity

(c) ∗√1 + i = ±
⎛
⎝
√√

2 + 1
2

+ i

√√
2− 1
2

⎞
⎠

(d) ∗√2i = ±(1 + i)

(e) ∗
√

1− i
√

3
2

= ±
(√

3− i

2

)

(f) ∗
√

1 + i
√

3 = ±
(√

3 + i√
2

)

(g) ∗√−5− 12i = ±(−2 + 3i)
(h) ∗√5 + 12i = ±(3 + 2i)
(i) ∗√−5 + 12i = ±(2 + 3i).

Here ∗√a + ib denotes the two 2th roots of the complex number a + ib.
Since the n nth roots of unity are given by (1.20), we have

zn − 1 = (z − 1)(z − ω1)(z − ω2) · · · (z − ωn−1), ωk = ωk = e2πki/n.

Dividing both sides by z − 1, using the identity

1 + z + z2 + · · · + zn−1 =
1− zn

1− z
(z �= 1),

and letting z → 1, we have

n = (1− ω1)(1− ω2) · · · (1− ωn−1), and
n = (1− ω1)(1− ω2) · · · (1− ωn−1).

As (1− e−iθ)(1− eiθ) = 2(1− cos θ) = 4 sin2(θ/2), it follows that

n2 =
n−1∏
k=1

|1− ωk|2 =
n−1∏
k=1

{
4 sin2

(
kπ

n

)}
= 22(n−1)

n−1∏
k=1

sin2
(
kπ

n

)
.
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Taking the positive square root on both sides we have

n = 2n−1
n−1∏
k=1

sin
(
kπ

n

)
, n > 1. (1.21)

We can make the following generalization: Consider the equation

Ma(z) = z2n − 2znan cosnφ + a2n = 0 (n ∈ N, a ∈ R+, φ ∈ R).

Solving this for zn, we find zn = ane±inφ so that

Ma(z) = [zn − aneinφ][zn − ane−inφ].

Therefore, using the concept of nth root of a complex number, we can write

Ma(z) =
n∏

k=1

[
z − aei(φ+2kπ/n)

] [
z − ae−i(φ+2kπ/n)

]

=
n∏

k=1

[
z2 − 2za cos

(
φ +

2kπ
n

)
+ a2

]
. (1.22)

Some special cases of (1.22) follow:

(a) Taking φ = 0, we have

(zn − an)2 =
n∏

k=1

[
z2 − 2za cos

(
2kπ
n

)
+ a2

]
.

(b) Taking φ = π/n, we have

(zn + an)2 =
n∏

k=1

[
z2 − 2za cos

(
(2k + 1)π

n

)
+ a2

]
.

(c) If a = 1 then, on dividing (1.22) by zn, z �= 0, we have

zn + z−n − 2 cos(nφ) =
n∏

k=1

[
z + z−1 − 2 cos

(
φ +

2kπ
n

)]

and so, if z = eiθ, this becomes

cos(nθ)− cos(nφ) = 2n−1
n∏

k=1

[
cos θ − cos

(
φ +

2kπ
n

)]

which is, for cos θ �= cosφ, equivalent to

cos(nθ)− cos(nφ)
cos θ − cosφ

= 2n−1
n−1∏
k=1

[
cos θ − cos

(
φ +

2kπ
n

)]
.
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In the limiting case when θ, φ→ 0, the above reduces to

n = 2n−1
n−1∏
k=1

sin
(
kπ

n

)
,

which is nothing but (1.21).

Questions 1.13.

1. What problem would be created by defining the argument of z = 0 to
be zero?

2. Loosely speaking, for complex numbers z1 and z2 we have

arg(z1z2) = arg z1 + arg z2.

What real-valued functions have the property that

f(x1x2) = f(x1) + f(x2)?

3. When does Arg (z1z2) = Arg z1 + Arg z2?
4. How are the complex numbers z1 and z2 related if arg(z1) = arg z2?
5. How are the arguments arg(z1) and arg z2 related if z1 = z2?
6. How are the arguments arg(z1) and arg z2 related if Re (z1z2) = |z1z2|?
7. How are the arguments arg(z1) and arg z2 related if |z1+z2| = |z1|+|z2|?
8. As the complex number z approaches the negative real axis from above

and below, what is happening to Arg z? What if z approaches the posi-
tive real axis from above and below?

9. How do the arguments of z and 1/z compare?
10. How do the arguments of z and z compare?
11. How do the arguments of z and 1/z compare?
12. What is the position of the complex number (cosα + i sinα)z relative

to the position of z?
13. What are some differences between the terms angle, real number, and

argument?
14. Of what use might the binomial theorem be in this section?
15. For which integers n does zn = 1 have only real solutions?
16. For which complex numbers z does

√
z/z = z/|z|?

17. Is it always the case that for any given nonzero complex number, either√
z2 = z or

√
z2 = −z?

18. Which postulates for a field are satisfied by the roots of unity under
ordinary addition and multiplication of complex numbers?

19. What can you say about the nth roots of an arbitrary complex number?
20. For α an arbitrary real number, how many solutions might you expect

zα = 1 to have?
21. If z = eiα (α ∈ (0, 2π)), is (1 + z)/(1− z) equal to i cot(α/2)?
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Exercises 1.14.

1. For a fixed positive integer n, determine the real part of (1 + i
√

3)n.
2. Find two complex numbers z1 and z2 so that

Arg (z1z2) �= Arg z1 + Arg z2.

3. Find two complex numbers z1 and z2 so that

Arg (z1z2) = Arg z1 + Arg z2.

4. Describe the following regions geometrically.
(a) Arg z = π/6, |z| > 1
(c) −π < Arg z < 0, |z + i| > 2

(b) π/4 < Arg z < π/2
(d) 1 < |z − 1| < 5.

5. If |1− z| < 1, show that |Arg z| < π/2.
6. If |z| < 1, show that |Arg ((1 + z)/(1− z))| < π/2.
7. If Re z > 0, show that Re (1/z) > 0. If Re z > a > 0, what can you say

about Re (1/z)?
8. If |z| = 1, z �= −1, show that z may be expressed in the form

z =
1 + it

1− it
,

where t is a real number.
9. Write the polar form of the following:

(a)
1 + cosφ + i sinφ
1 + cosφ− i sinφ

(0 < φ < π/2)

(b)
1 + cosφ + i sinφ
1− cosφ− i sinφ

(c) 1− sinφ + i cosφ (0 < φ < π/2)
(d) − sinφ− i cosφ
(e) (1 + i)n (n ∈ N)
(f) (1 + i

√
3)n + (1− i

√
3)n (n ∈ N).

10. Find all values of the following and simplify the expressions as much as
possible.

(a) i1/2 (b) i1/4 (c) (−i)1/3 (d)
√

1 + i

(e) 6
√

8 (f)
√

4 + 3i (g) (4− 3i)1/3 (h)
√

2 + i

11. If ω = (−1 + i
√

3)/2 is a cube root of unity and if

Sn = 1− ω + ω2 + · · · + (−1)n−1ωn−1,

then find a formula for Sn.
12. Let ω be a cube root of unity and let a, b, c be real. Determine a condition

on a, b, c so that (a + bω + cω2)3 is real.
13. Let ω be a cube root of unity. Determine the value of

(a) (1 + ω)3 (b) (1 + 2ω + ω2)(1 + ω + 2ω2)

(c) (1 + ω + 2ω2)9 (d) (1 + 3ω + 2ω2)(1 + 4ω + 3ω2).
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14. Let ω �= 1 be an nth root of unity. Show that

1 + 2ω + 3ω2 + · · · + nωn−1 = − n

1− ω
.

15. Let ωk = cos(2kπ/n) + i sin(2kπ/n). Show that
∑n

k=1 |ωk − ωk−1| < 2π
for all values of n. What happens as n approaches ∞?

16. Find the roots of the equation (1 + z)5 = (1− z)5.
17. Find α, β, γ and δ such that the roots of the equation

z5 + αz4 + βz3 + γz2 + δz + η = 0

lie on a regular pentagon centered at 1.
18. Prove that for any real x and a natural number n,

ei2n cot−1(x)

(
ix + 1
ix− 1

)n

= 1.

19. Find a positive integer n such that

(i) (
√

3 + i)n = 2n (ii) (−1 + i)n = 2n/2.


